ответ:4048
Объяснение: 1. Заметим, что из угловых клеток шахматный конь может прыгнуть ровно в 2 различные клетки, следовательно, в угловых клетках записано число 2. Таким образом, вклад от угловых клеток равен 2⋅4=8.
2. Заметим, что в соседних с угловыми клетках, расположенных на краю доски, записано число 3. Следовательно, вклад от таких клеток в общую сумму даст 3⋅8=24.
3. Для остальных клеток, расположенных на краю доски (которых ровно 4⋅(24−4)=80 штук) существует ровно передвинуть шахматного коня на новую клетку, а значит, в этих клетках записано число 4. Кроме того, в клетках, соседних по диагонали с угловыми, также записано число 4. Отсюда вклад тех клеток, в которых записано число 4, равен 4⋅80+4⋅4=336.
4. Для остальных клеток, которые расположены во втором столбце в начале и в конце доски, а также во второй строчке вверху и внизу доски, записано число 6. Таких клеток ровно 80 штук, и вклад от них равен 80⋅6=480.
5. Из остальных клеток, очевидно, шахматный конь может перейти в новые и это максимально возможное число Поскольку оставшихся клеток ровно (24−4)2=400 штук, то сумма чисел, записанных в этих клетках, составляет 8⋅400=3200.
6. Суммируя значения, записанные в клетках доски, получим
8+24+336+480+3200=4048.
Непустое подмножество линейного пространства называется линейным подпространством, если линейные операции, то есть сложение векторов и умножение их на число, не выводят за пределы этого множества. Аксиомы линейного пространства для этого множества проверять не обязательно - они будут выполнены автоматически.
1) Умножив такой вектор на отрицательное число, получим вектор, конец которого лежит во второй четверти. Поэтому ответ в первом случае отрицательный.
2) Складывая векторы, у которых координаты с четными номерами равны 0, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
3) Складывая векторы, у которых координаты с четными номерами равны между собой, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
6 - 2х + 9 = 18 + 2х - 3х + 9
- 2х - 2х + 3х = 18 + 9 - 6 - 9
- х = 12
х = - 12
Проверка: 6 - (2 * (- 12) - 9) = (18 + 2 * (- 12) - 3(- 12 - 3)
6 - (- 24 - 9) = (18 - 24) + 36 + 9
6 - (- 33) = - 6 + 36 + 9
6 + 33 = 30 + 9
39 = 39
ответ: при х = - 12.