Решаем в м и сек.
10 мин. = 600 сек. Вверх по реке - это против течения.
Скорость первого катера против течения:
9 - 1 = 8 м/с, а второго 7- 1 = 6 м/с.
Пусть весь путь равен S, тогда S/6 - S/8 = 600
4S/24 - 3S/24 = 600;
S/24 = 600;
S = 600 · 24 = 14400 метров
Вниз по течению скорость первого катера:
9 + 1 = 10 м/с.
Он проплыл 14400 метров за 14400/10 = 1440 сек
Скорость второго по течению 7 + 1 = 8 м/с.
Он проплыл 14400м за 14400/8 = 1800 сек
1800 - 1440 = 360 сек = 360/60 = 6 минут
ответ: на 6 минут
___ Вроде бы так, если не ошибаюсь.
y ' =(cosx+2x) ' =(cosx) ' +(2x)' =-sinx+2*(x)' = -sinx+2*1 =2 -sinx > 0, т.к. -1 ≤ sin x≤ 1 .
y ' >0 ⇒ функция возрастает (y ↑).
2) y =sin2x -3x.
y '=(sin2x -3x)' = (sin2x)' -(3x)' =(cos2x)*(2x)' -3*(x)' =(cos2x)*2*(x)' -3*1.=cos2x*2*1 -3=
2cos2x - 3 < 0 следовательно функция убывает (у ↓).
* * * -1≤cos2x≤1⇔ -2*1≤2*cos2x≤2*1 ⇔ -2 -3 ≤2cos2x -3 ≤2 -3 ⇔ -5 ≤2cos2x -3 ≤ -1 * * *
3) y =x² -5x +4 .
y '= (x² -5x +4 )' =(x²)' -(5x)' +(4)' =2x -5 +0 =2x -5.
y '=0⇒ 2x-5=0⇒ x =2,5.
функция убывает , если y ' < 0⇒2x -5.<0 ⇒2x <5⇒x<2,5 иначе .x∈ (-∞;2,5)
функция возрастает, если y ' <0 2x -5.>0 ⇒2x >5⇒x>2,5 иначе .x∈ (2,5 ;∞)
ответ: у ↓ , если x∈ (-∞;2,5) и y ↑ , если x∈ (2,5 ; ∞) .
y ' - +
2,5
y ↓ min y ↑