1. Сумма углов n-угольника равна 180°(n-2).
В случае 12-угольника сумма равна 1800 градусов. Т. к. он правильный, то углы его равны 1800/12=150 градусов. ответ : 150°
2. Площадь параллелограмма равна произведению его основания (a) на высоту (h):
S = a ⋅ h
144 см² = а ⋅ 16 см
a = 9 см
3.s = a * b / 2
a - катет b - катет
a = 12
b^2 = 13^2 - 12^2
b^2 = 169 - 144
b^2 = 25
b = 5
S = 5 * 12 / 2
S = 30
4. Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.
Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).
Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.
Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.
Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:
х² + (14 - х)² = 10²,
х² + 196 - 28х + х² - 100 = 0,
2х² - 28х + 96 = 0,
х² - 14х + 48 = 0.
D = (-14)² - 4 · 1 · 48 = 196 - 192 = 4; √4 = 2
х₁ = (14 + 2)/(2 · 1) = 16/2 = 8, х₂ = (14 - 2)/(2 · 1) = 12/2 = 6
Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь
S = 0,5 · 16 · 12 = 96 (см²)
Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь
S = 0,5 · 12 · 16 = 96 (см²)
ответ: 96 см².
5.Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ.
проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.
Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)
223.1 уменьшаемое увеличили на 2 значит:
чтобы разность не изменилась, нужно вычитаемое увеличить на 2;
чтобы разность уменьшить, нужно вычитаемое увеличить на заданное число плюс 2; чтобы разность увеличить, нужно вычитаемое уменьшить на заданное число минус 2.
а) 12+2=14 ответ: увеличить на 14;
б) 6-2=4 ответ: уменьшить на 4;
в) 2+2=4 ответ: увеличить на 4;
г) 2-2=0 ответ: оставить как есть;
д) ответ: увеличить на 2;
е) 1-2=-1 ответ: увеличить на 1.
223.2 вычитаемое уменьшили на 8 значит:
чтобы разность не изменилась, нужно уменьшаемое уменьшить на 8;
чтобы разность уменьшить на заданное число, нужно от -8 отнять заданное число
чтобы разность увеличить, нужно к -8 прибавить заданное число
а) -8+3=-5 ответ: уменьшить на 5;
б) -8-5=-13 ответ: уменьшить на 13;
в) -8+4=-4 ответ: уменьшить на 4;
г) -8-10=-18 ответ: уменьшить на 18;
д) -8+8=0 ответ: оставить как есть;
е) ответ: уменьшить на 8.
1. 1.4 = 1целая4/10 = 1целая2/5
2. 1целая2/5 - 1целая 3/7 = 1ц14/35 - 1ц15/35 (общий знаменатель) = -1/35
3. 0.4^2= 0.16= 16/100= 4/25
4. 4/25 : (-1/35)=4/25*(-35/1) = 4/5*(-7/1)=-28/1=-28
ответ: -28