М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Регина56797
Регина56797
25.06.2020 13:37 •  Алгебра

Вася проходит серию тестов, за каждый из которых он может получить от 0 до 100 . перед выполнением последнего теста вася подсчитал, что если он получит за него 100 , то его средний будет 85, а если получит всего 55 , то его средний будет 80. сколько всего тестов в этой серии?

👇
Ответ:
togrul654
togrul654
25.06.2020
Задача звучит страшно, но на самом деле решается достаточно просто.
пусть Ваня уже сделал n тестов со соедним a. То есть уже набрал an
тогда если он получит за последний тест его средний
(an+100)/(n+1)=85
а если получит 55, то
(an+55)/(n+1)=80
решаем эту систему уравнений
\left \{ {{(an+100)=85(n+1)} \atop {(an+55)=80(n+1)}} \right.
\left \{ {{an+100=85n+85)} \atop {an+55=80n+80)}} \right.
\left \{ {{an+15=85n)} \atop {an=80n+25)}} \right.
подставляем an из второго уравнения в первое
80n+25+15=85n
5n=40
n=8
n+1=9
ответ: серия из 9 тестов
4,4(37 оценок)
Открыть все ответы
Ответ:
72737
72737
25.06.2020

№ 2:

при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?

введем функцию

y=|x^2−2x−3|

рассмотрим функцию без модуля

y=x^2−2x−3

y=(x−3)(х+1)

при х=3 и х=-1 - у=0

х вершины = 2/2=1

у  вершины = 1-2-3=-4

после применения модуля график отражается в верхнюю полуплоскость

при а=0 - 2 корня (нули х=3 и х=-1)

при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)

при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)

при а> 4 - 2 корня (от исходной параболы)

ответ: 4

4,4(18 оценок)
Ответ:
moskalkov
moskalkov
25.06.2020

ответ:

x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)

объяснение:

|x²-9|> 2|x|+1

рассмотреть все возможные случай:

|x²-9|-2|x|> 1

решим систему неравенств 4 случая:

x²-9-2x> 1,   x²-9≥0, x≥0

-(x²-9)-2x> 1,   x²-9< 0, x≥0

x²-9-2×(-x)> 1, x²-9≥0, x< 0

-(x²-9)-2×(-x)> 1, x²-9< 0, x< 0

решим неравенств относительно x:

x∈(-∞, 1-√11)∪(1+√11, +∞),   x∈(-∞, -3]∪[3, +∞),   x≥0

x∈(-4, 2),   x∈(-3, 3),   x≥0

x∈(-∞, -1-√11)∪(-1+√11, +∞),   x∈(-∞, -3]∪[3, +∞),   x< 0

x∈(-2, 4),   x∈(-3,3),   x< 0

найдем перечисление:

x∈(-∞, 1-√11)∪(1+√11, +∞),   x∈[3, +∞)

x∈(-4, 2),   x∈[0, 3)

x∈(-∞, -1-√11)∪(-1+√11, +∞),   x∈(-∞, -3]

x∈(-2, 4),   x∈(-3, 0)

найдем перечисление:

x∈(1+√11, +∞)

x∈[0, 2)

x∈(-∞, -1-√11)

x∈(-2, 0)

найдем объединение:

x∈(-∞, -1-√11)∪(-2, 2)∪(1+√11, +∞)

4,5(96 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ