М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
insaf1282
insaf1282
28.11.2020 00:52 •  Алгебра

Нужно, ! хоть что-нибудь 1. tgx=tg 3x 2. cos2x+sin(3pi/2-x)=0 3.sin2x=cosx

👇
Ответ:
katpetrompet4345
katpetrompet4345
28.11.2020
tgx=tg 3x
одз;
х - не равно pi/2+pi*к и  3х - не равно pi/2+pi*к
tgx-tg 3x=0
(sin(x)*cos(3x)-sin(3x)*cos(x)) / (cos(x)*cos(3x))=0
(sin(x)*cos(3x)-sin(3x)*cos(x))=0
sin(x-3х)=0
sin(2х)=0
2х=pi*к
х=pi/2*к
ответ с учетом ОДЗ х=pi*к

cos2x+sin(3pi/2-x)=0
cos2x-cos(x)=0
-2*sin(x/2)*sin(3x/2)=0
x/2=pi*k или 3x/2=pi*k 
x=2pi*k или x=2pi*k/3 
ответ x=2pi*k/3 

sin2x=cosx

sin2x=cosx
2sin(x)*cos(x)-cosx=0
(2sin(x)-1)*cos(x)=0
sin(x)=1/2 или cos(x)=0
х = (+/-)pi/6+2*pi*k или х=pi/2+pi*k - это ответ
4,8(43 оценок)
Открыть все ответы
Ответ:
ната12354
ната12354
28.11.2020

Объяснение:

1. Функция задана формулой y = -2x + 7.

Определите:

1) значение функции, если значение аргумента равно 6;

Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:

х=6

у= -2*6+7= -5     при х=6    у= -5

2) значение аргумента, при котором значение функции равно -9;

Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:

-9= -2х+7

2х=7+9

2х=16

х=8        у= -9   при  х=8

3) проходит ли график функции через точку А(-4;15).

Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.

15= -2*(-4)+7

15=15, проходит.

2. Постройте график функции y = 3x – 2.

Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.

Таблица:

х     -1      0      1

у     -5    -2      1

Пользуясь графиком, найдите:

1) значение функции, если значение аргумента равно 2;

Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:

х=2

у=3*2-2=4      у=4   при  х=2

Согласно графика, также при х=2  у=4

2)значение аргумента, при котором значение функции равно -5.

Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:

y = 3x – 2

у= -5

-5=3х-2

-3х= -2+5

-3х=3

х= -1             у= -5   при  х== -1

Согласно графика, у= -5  при х= -1.

3. Не выполняя построения, найдите координаты точек пересечения графика функции у = 0,5х - 3 с осями координат.

а)график пересекает ось Ох при у=0:

у=0

0=0,5х-3

-0,5х= -3

х= -3/-0,5

х=6

Координаты точки пересечения графиком оси Ох (6: 0)

б)график пересекает ось Оу при х=0:

х=0

у=0-3

у= -3

Координаты точки пересечения графиком оси Оу (0; -3)

4. При каком значении к график функции у = kx- 6 проходит через точку А (-2; 20)?

х= -2

у=20

20=k*(-2)-6

20= -2k-6

2k= -6-20

2k=-26

k= -13

Уравнение: у= -13х-6

5. Постройте график функции:

y (-2х, если х 2, -4, если х > 2.

Неясное задание.

4,7(8 оценок)
Ответ:
KaiBennet
KaiBennet
28.11.2020

8

Объяснение:

Сложим два равенства, получим уравнение:

x^2 + y^2 = 4(x+y)

Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:

(x-2)^2 + (y-2)^2 = 8

Выражаем x через y:

(y-2)^2 = 8 - (x-2)^2 \\y = 2 + \sqrt{8 - (x-2)^2}

(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)

Наша целевая функция, в которой будем находить максимум, имеет вид:

x + 2 + \sqrt{8 - (x-2)^2} = S, где S - сумма решений системы уравнений.

Найдем производную по х, приравняем к нулю эту функцию

Получим

1 - \frac{x-2}{\sqrt{8-(x-2)^2 }} = 0 \\x - 2 = \sqrt{8 - (x-2)^2}\\2(x-2)^2 = 8\\(x-2)^2 = 4\\x_1 = 0;\\x_2 = 4

Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4

Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8

4,6(20 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ