Пусть х-первое число, у-второе
Составляем уравнения по условию задачи:
раз 9/10 числа х на 4 больше 7/15 числа у, то при вычитании 4 из 9х/10, они равны
9х/10-4=7у/15
аналогично составляется второе уравнение
3х/5+9=7у/10
9х/10-4=7у/15 выражаем 7у=(9х-40)*15/10=(9х-40)*3/2
3х/5+9=7у/10 выражаем 7у=(3х+45)*10/5=2(3х+45)
Приравниваем через 7у, решаем
(9х-40)*3/2=6х+90
(9х-40)*3/2=3(2х+30)
9х-40=4х+60
5х=100
х=20
Подставляем в выражение для у
7y=6х+90
у=(6х+90)/7= (6*20+90)/7=30
Проверяем подставляя значения в составленные выражения
9*20/10-4=7*30/15
14=14
3*20/5+9=7*30/10
21=21
Для х>0 следует рассмотреть функцию y1 = x² + 8x + 7,
Для х<0 следует рассмотреть функцию y2 = x² - 8x + 7,
У нас интервал [-8,-2], следовательно рассматриваем функцию у2.
y2 = x² - 8x + 7 - парабола веточками вверх. вершина параболы (минимальное значение функции) имеет место при х = 8:2 = 4, уmin = 16 - 32 + 7 = -9
Найдём нули этой функции:
x² - 8x + 7 = 0
D = 64 - 28 = 36
√D = 6
х1 = (8 + 6):2 = 7
х2 = (8 - 6):2 = 1
График функции y1 находится левее оси у, т.е. при х<0 только своейнисходящей частью, т.е. у∈(-∞, 0). На интервале [-8,-2] наименьшее значение функции будет при х = -2, т.е. у наим = у(-2) = 4 + 16 + 7 = 27, а наибольшее значение при х = -2, т.е у наиб = у(-8) = 64 + 64 + 7 = 135
ответ: у наим = 27, у наиб = 135
решение пусть х см ширина первоначальная тогда новая х-4
длина х+2 новая длина х+4
x*(x+2)-(х-4)(х+4)=40
2x=40-16
x=12 см