Сначала переносишь единицу в левую сторону с противоположным знаком и тем самым приравниваешь к нулю. Потом находишь общий знаменатель:(х+1)(х+2)(х+4)(х-1). к первой дроби дополнительный множитель:(х-1)(х+4) ко второй:(х+1)(х+2) к единице все скобки получается:6х квадрат+24х-6х-24+8х квадрат+16х+8х+16-х в 4-ой степени+4х в кубе+х в кубе-4х квадат+2х в кубе-8х квадрат-2х квадарт+8х+х в кубе-4х квадарт-х квадарт+4х+2х квадрат-8х-2х+8 приводим подобные слагаемые:-х в 4-ой степени +8х в кубе-7х квадрат +44х/(х+1)(х+2)(х-1)(х+4) теперь умножаем на (-1) и меняем знаки на противоположные (в числителе) затем система, числитель равен нулю, а знаменатель не равен нулю
Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.