ДАНО НАЙТИ 1 - интервалы монотонности 2 - локальные экстремумы. РЕШЕНИЕ 1) Исследование на монотонность - точки разрыва функции - деление на 0 надо исключить. . х+2 ≠ 0 и х ≠ - 2 - разрыв функции - есть. D(x) - X∈(-∞;-2)∪(-2;+∞) 2) Поиск экстремумов - в корнях первой производной. Корни производной: х1 = - 3 и х2 = -1 (без решения). Максимум - Y(-3) = 6, минимум - Y(-1) = 2. Интервалы монотонности. Убывает - Х∈(-∞;-3)∪(-1;+∞) Возрастает - X∈(-3;-2)∪(-2;-1) Точка перегиба функции - в точке разрыва - при Х= -2 - без анализа второй производной. График функции на рисунке в приложении.
Объяснение:
ОДЗ: x≠5; x≠(-2) ответ: x∈(-∞;-2)∪(-2;5)∪(5;+∞)