М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Подпишись1
Подпишись1
25.07.2021 06:41 •  Алгебра

(5x--8x)при х =0,75 (6-2х)+(15-3х)при х=0,2 12+7х-(1-3х)при х=-1,7 37-(х-16)+(11х-53)при х =-0,03

👇
Ответ:
1) 5х-1-2+8х
13х-3 при х=0,75
13*0,75-3=9.75-3=6.75

2)6-2х+15-3х
21-5х при х=0,2
21-5*0,2=21-1=20

3. 12+7х-1+3х
11+10х при х=-1,7
11+10*(-1.7)=11-17=-6

4. 37-х+16+11х-53
0+10х при х=-0,03
0+10*(-0,03)=0-0,3=-0,7
4,4(26 оценок)
Открыть все ответы
Ответ:
PORCH1488
PORCH1488
25.07.2021
Похожее задание было уже вчера или позавчера здесь. Ну да ладно)))
Суть в том, что есть на свете волшебная такая штука - дискриминант. (Похоже на слово дискриминация, правда?) Ну, он и производит дискриминацию - разделяет квадратные уравнения на те, где нет корней (это когда D<0); те, где корень всего один (когда D=0) и те, где корней два (D>0). Поэтому мы сейчас запишем выражение для нахождения дискриминанта (D=b^2-4ac), подставив а=2р-1; b=-(4p+3)= -4-3; c=2p+3, потом упростим его и посмотрим, при каких р он неотрицателен, а значит, уравнение имеет корни.
Итак, к делу:
D=(-4p-3)^2-4*(2p-1)(2p+3)= \\ &#10;=16p^2+24p+9-4(4p^2-2p+6p-3)= \\ &#10;=16p^2+24p+9-16p^2+8p-24p+12= 8p+21 \\ \\ &#10;8p+21 \geq 0 \\ &#10;8p \geq -21 \\ &#10;p \geq -21:8 \\ &#10;p \geq -2,625

ответ: х∈[-2,625; +∞).

(К слову: при р=0,625 решение уравнения будет одно, при p>0,625 их будет два.)
4,8(21 оценок)
Ответ:
viktoska87
viktoska87
25.07.2021

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

4,4(24 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ