Целое решение неравенства - это целое число, входящее в область решений неравенства. Пример 1: x-3<5 x<5+3 x<8 Решением этого неравенства является интервал (-∞;8) В этот интервал входят, например, целые числа -6; 0; 1; 5; 7 и т.д. Эти числа и будут называться целыми решениями неравенства. Пример 2: 4< x < 8 Решением является открытый интервал (4;8). В этот интервал входят целые числа 5; 6 и 7. Они и будут являться целыми решениями неравенства. Пример 3: 4≤ х ≤ 8 Решением неравенства является закрытый интервал [4:8]. В этот интервал входят целые числа 4; 5; 6; 7 и 8. Они и будут являться целыми решениями неравенства.
Y=-8x/(x²+4). 1) Так как x²+4>0 при любых значениях x, то функция определена при любых х, т.е. областью определения является вся числовая ось. 2) При x=0 y=0, т.е график пересекает координатные оси в начале координат. Других точек пересечения с осями координат нет. 3) y(-x)=-y(x), так что функция является нечётной и потому её можно исследовать только при x≥0. 4) Функция непрерывна на всей числовой оси. lim y при x⇒+∞=0. Таким образом, ось ОХ является горизонтальной асимптотой. Других асимптот нет. 5) y'=(-8*(x²+4)+8x*2x)/(x²+4)²=(8x²-32)/(x²+4)²=8*(x²-4)/(x²+4)², откуда видно, что , т.е. производная обращается в 0 при x=2 и при x=-2. При x<-2 y'>0, при -2<x<2 y'<0, при x>2 y'>0. Отсюда ясно, что точка x=-2 есть точка максимума, равного y(-2)=16/(4+4)=2, а точка x=2 есть точка минимума, равного y(2)=-16/(4+4)=-2. Эти значения одновременно являются соответственно наибольшим и наименьшим значениями функции на всей области определения.
2) 1,5 × 8,2 = 12,3
ответ: 12,3