1. От чего зависит соленость воды?
Море Количество осадков Испаряемость Соленость
Красное 100 мм.в год 1200 мм.в год 42 промилле
Черное 500 мм.в год 600 мм.в год 18 промилле
Балтийское 700 мм.в год 300 мм.в год 11 промилле
Вывод:
Соленость зависит от … и … .
Чем … количество осадков и … испаряемость, тем … соленость.
2. Изменение температуры поверхностных вод по параллелям
90 с.ш. -1,7
60 с,ш. +4,8
30с.ш. +21
0 с.ш. +28
Вывод: Наибольшие средние температуры воды +27-28 наблюдается на….
Самые низкие – ….
3. Заполни пропуски
Главные свойства морской воды – это … и … .
Количество веществ в граммах, растворенных в 1 литре воды, называют… .
В среднем в океанической воде растворено … гр. веществ.
Единицы измерения солености называются … .
Самое соленое море -… . Соленость зависит от … и поступления пресных вод.
Самая высокая температура воды вблизи … .
С глубиной температура … .
Объяснение:
Мы знаем, что число n в степени а/b= Корень с показателем а из числа n в степени b
Давайте переведём корень из пяти в 5 в степени 1/6
Теперь действуем по правилу деления степеней- из показателя делимого вычитаем показатели делителя
То есть 1/3-1/6=2/6-1/6=1/6, значит мы поделили 5 в 1/3 на 5 в 1/6 и от первого числа осталось 5 в 1/6
Получается в скобках у нас останется только 5 в 1/2 * 5 в 1/6
По правилу умножения степеней, чтобы умножить числа с одинаковым основанием нужно сложить из показатели: складываемся 1/2 с 1/6=>3/6+1/6=4/6=2/3
Получаем 5 в 2/3
Чтобы возвести степень в степень умножаем показатели, получается нужно 2/3 умножить на три, проучится 2, то есть все это равно 5^2, что равно 25
1)Найдём длину и уравнение медианы BM. Поскольку BM - медиана, то M - середина стороны AC. Воспользуемся формулой для вычисления координат середины отрезка, поскольк мы знаем координаты его концов(отрезок AC):
x = (x1 + x2) / 2 = 5 + 0 / 2 = 2.5
y = (y1 + y2) / 2 = (-6 + 10) / 2 = 2
Таким образом, M(2.5;2)
Теперь, зная координаты точки B и координаты точки M по формуле найдём длину отрезка BM:
|BM| = √(x-x₀)²+(y-y₀)², где x,y - абсцисса и ордината конца отрезка, x₀,y₀ - абсцисса и ордината начала отрезка. Подставим и вычислим:
|BM| = √(2.5+3)²+(2 - 4)² = √(30.25 + 4) = √34.25 (советую проверить потом, верно ли я везде посчитал, так как в спешке всё делаю, но сама суть думаю, ясна).
Теперь нужно найти уравнение медианы: искать будем его в общем виде y = kx + b(нужно найти k и b). Учитывая тот факт, что раз прямая проходит через точки B и M, её координаты должны удовлетворять формуле. Подставим координаты обоих точек в общее уравнение и составим и решим систему:
4 = -3k + b 3k - b = -4 5.5k = -2 k = -2/5.5
2 = 2.5k + b 2.5k + b = 2 3k - b = 4 b = 3k - 4 = -6/5.5 - 4 (ну вот, где-то точно в вычислениях ошибся)
b = -28/5.5(так вроде посчитал).
Теперь подставим k и b в общий вид, и получим то, что хотели, то есть уравнение медианы:
y = -2/5.5 k - 28/5.5 (коэффициенты получились не самые хорошие, это может быть связано как с вычислительной ошибкой, так и с самим условием, хотя всё проверял, по идее всё верно подсчитано должно быть)
2)Длину высоты CH найти ещё проще. Совместим точку H с началом координат. Тогда получим, что координаты точки H(0;0), а точки C(0;10). Найдём длину отрезка CH:его длина равна 10(можно по предыдущей формуле, а можно догадаться, что разница между координатами этих точек равна 10)