М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Bredovik
Bredovik
13.12.2020 21:02 •  Алгебра

Найдите значение выражения 16^0,82*64^0,12

👇
Ответ:
Vika4634
Vika4634
13.12.2020
16^0.82=(2^4)^0.82=2^3.28
64^0.12=(2^6)^0.12=2^0.72
2^3.28×2^0.72=2^(3.28+0.72)=2^4=16
4,4(53 оценок)
Открыть все ответы
Ответ:
ильзат12
ильзат12
13.12.2020

Чтобы найти среднюю скорость автомобиля, нужно весь путь, который проехал автомобиль, разделить на всё время, которое он был в пути.

Первые два часа автомобиль ехал со скоростью 70 км/ч. Значит он проехал 70*2=140 (км)

Затем пять часов автомобиль ехал со скоростью 90 км/ч. Значит он проехал 5*90=450 (км)

В конце пути автомобиль один час ехал со скоростью 60 км/ч. Значит он проехал 1*60=60(км)

140+450+60=650 (км) - весь путь, который проехал автомобиль.

2+5+1=8 (часов) - всё время, которое автомобиль был в пути.

Vсред. = 650:8 = 81,25 (км/ч)

ответ: средняя скорость автомобиля на протяжении всего пути 81,25 км/ч.

4,5(20 оценок)
Ответ:
Sidi123
Sidi123
13.12.2020

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

            Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

            Не будем требовать от школьников невозможного и предложим один из алгоритмов решения подобных задач.

            Итак, функция вида y = ax2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax2. То есть а не должно равняться нулю, остальные коэффициенты (b и с) нулю равняться могут.

            Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

            Самая зависимость для коэффициента а. Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, – то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

 

4,8(82 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ