Пусть в сектор вписан прямоугольник
.
и
- середины сторон
и
соответственно. Так как прямоугольник симметричен оси симметрии сектора, то две его стороны перпендикулярны этой оси, а две другие стороны - параллельны этой оси.
Так как прямоугольник симметричен оси симметрии сектора, то:
Проведем луч , составляющий с осью симметрии сектора угол
. Зададим ограничения на х:
Найдем сторону прямоугольника, перпендикулярную оси симметрии сектора.
Рассмотрим треугольник . Запишем соотношение для синуса угла х:
Заметим, что соответствует радиусу сектора. Тогда, выражение для
примет вид:
Так как - половина стороны
, то найдена первая сторона прямоугольника:
Найдем сторону прямоугольника, параллельную оси симметрии сектора. Представим ее длину в виде:
Длину найдем из того же прямоугольного треугольника , записав выражение для косинуса угла
:
Выражаем :
Длину найдем из прямоугольного треугольника
. Запишем выражение для тангенса угла
:
Откуда:
Так как , то:
Таким образом, найдена вторая сторона прямоугольника:
Площадь прямоугольника равна произведению его смежных сторон:
Найдем производную:
Приравняем производную к нулю:
Учитывая ограничения получим, что:
Проверим, является ли эта точка точкой экстремума.
Найдем значение производной при :
Найдем значение производной при :
При переходе через точку производная меняет знак с плюса на минус. Значит, это точка максимума.
Найдем значение максимума:
Значит, наибольшая площадь прямоугольника равна
ответ:
ОДЗ:
Решаем каждое неравенство:
⇒
⇒
⇒
⇒
Подмодульные выражения обращаются в 0 в точках
и
Это точки делят числовую прямую на три промежутка.
Раскрываем знак модуля на промежутках:
(-∞;-4]
|x+4|=-x-4
|x|=-x
⇒
⇒ x < 1
решение неравенства (-∞;-4]
(-4;0]
|x+4|=x+4
|x|=-x
⇒
⇒ x < -2 или x > 1
решение неравенства (-4;-2)
(0;+∞)
|x+4|=x+4
|x|=x
⇒
⇒ x > 1
решение неравенства (1;+∞]
Объединяем ответы трех случаев:
при
ОДЗ:
Решаем неравенство:
Два случая:
если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента
⇒
⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒
⇒
⇒ (-3;-1)
не принадлежат (-∞;-4]
на (-4;0]
⇒
⇒ x < -5 или x > 1
не принадлежат (-4;0]
(0;+∞)
⇒
⇒
⇒
о т в е т этого случая
если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента
⇒
⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒
⇒
⇒
(-∞;-3)U(1;+∞)
о т в е т. (-∞;-4]
на (-4;0]
⇒
⇒ -5 < x < 1
о т в е т. (-4;0]
(0;+∞)
⇒
⇒
⇒
о т в е т этого случая
С учетом ОДЗ получаем окончательный ответ: