10.
Відповідь:
40 км/год; 45 км/год.
Пояснення: Нехай швидкість першого поїзда х км/год, тоді швидкість другого поїзда х+5 км/год. Перший поїзд пробув у дорозі на 1 годину менше і проїхав 900:2=450 км, другий поїзд проїхав також 450 км. Маємо рівняння:
450/х - 450/(х+5) = 1
450х+2250-450х-х²-5х=0
х²+5х-2250=0
За теоремою Вієта х=-50 (не підходить) х= 40.
Швидкість першого поїзда 40 км, швидкість другого поїзда 40+5=45 км/год.
11.
Відповідь:
15 км/год; 18 км/год.
Пояснення: Нехай швидкість першого лижника х км/год, тоді швидкість другого лижника х+3 км/год. Перший лижник пробув у дорозі на 1/3 години менше. Маємо рівняння:
30/х - 30/(х+3) = 1/3
90х+270-90х-х²-3х=0
х²+3х-270=0
За теоремою Вієта х=-18 (не підходить) х= 15.
Швидкість першого лижника 15 км, швидкість другого лижника 15+3=18 км/год.
|(5х-2(у+4)=0
|(6(2х+3)-у=41
Раскроем скобки:
|5х-2у-8 =0
|12х- у+18=41
Из первого уравнения выразим у через х
5х-2у-8 =0
2у=5х-8
у=(5х-8):2
Подставим это значение во второе уравнение
12х- (5х-8):2+18=41
Умножим обе части на 2
24х-5х+8+36=82
19х=82-44
19х=38
х=2
у=(5*2-8):2
у=1
Эта же система уравнений решается и методом сложения:
|(5х-2(у+4)=0
|(6(2х+3)-у=41
Раскрываем скобки
|5х-2у-8 =0
|12х- у+18=41
Умножим второе уравнение на -2
|5х-2у-8 =0
|-24х+2у-36=-82
Сложим уравнения и получим:
-19х-44=-82
-19х=-38
х=2
5*2-2у-8 =0
10-2у-8=0
2у=2
у=1
f`(x)=cosx/(5+sinx)
f(x)=6÷x^1/3+12÷x^5/3
f`(x)=-2/x∛x -20/x²∛x²
f(x)=lg(4-3x)
f`(x)=-3/(4-3x)ln10
f(x)=4x корень(3x^2-2x+1)
f`(x)=4√(3x²-2x+1)+(6x²-2x)/√(3x²-2x+1)
f(x)=5×x^4/5
f`(x)=
f(x)=корень(4x+3)
f`(x)=2/√(4x+3)