Нам необходимо найти сумму первых семи членов арифметической прогрессии. Для этого нам нужно воспользоваться формулой:
Sn=((2a1+(n-1)d)/2)*n
где a1-первый член арифметической прогрессии,
n-количество членов прогрессии,
d-разность данной арифметической прогрессии.
Нам необходимо найти a1. Но, из условия задачи, нам дано только a12=-2, d=1. Мы знаем, что n-ый член прогрессии можно найти из формулы:
an=a1+d(n-1)
Выразим из данной формулы a1:
a1=an-d(n-1)
a12=-2, d=1, n=12
a1=an-d(n-1)=a12-d(12-1)=-2-1(12-1)=-2-11=-13
Тогда S7=?
a1=-13, d=1, n=7
S7=((2a1+(n-1)d)/2)*n=((2*(-13)+(7-1)*1)/2)*7=((-26+6)/2)*7=(-20/2)*7=-10*7=-70
Объяснение:
Перенесем все влево и вынесем за скобки :
Из этого следует, что уравнение всегда имеет хотя бы одно решение - . Задача сводится к тому, чтобы посмотреть, при каких
будут корни у уравнения
и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.
1) проверим, при каком значении корнем уравнения
будет
. Подставляем ноль в уравнение:
. При
имеем:
Делаем вывод, что при уравнение имеет два корня:
.
2) при уравнение
не может иметь корень
. Уравнение - квадратное. Сразу ищем дискриминант:
Здесь рассматриваем 3 случая:
2.1. Если , то уравнение
решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.
2.2. Если , то подставляя вместо параметра -9 в итоге получаем:
. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.
2.3. Если , то уравнение
имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит
, а мы его проверяли отдельно - при
корней будет 2, а не 3, поэтому из неравенства его нужно исключить.
ОТВЕТ: При уравнение имеет единственный корень; при
и
уравнение имеет два различных корня; при
уравнение имеет три различных корня.
3х + 4у = 7 | · (-3) ⇒ -9x - 12y = -21 Сложим:
х = -3
Теперь х = 3 надо подставить в любое уравнение,
например, в 1-е
5·(-3) + 6у = 9
-15 + 6у = 9
6у = 9 + 15
6у = 24
у = 4
ответ:(-3;4)