Первое число, кратное 6 и большее 100 - это число 102.
Можно рассматривать последовательность этих чисел как арифметическую прогрессию, у которой а₁ = 102, разность d = 6.
Найдем количество элементов последовательности n.
Формула n-го члена арифметической прогрессии an = а₁ + d(n - 1).
an < 200, поэтому решим неравенство а₁ + d(n - 1) < 200 и найдем n:
102 + 6 · (n - 1) < 200,
102 + 6n - 6 < 200,
6n + 96 < 200,
6n < 200 - 96,
6n < 104,
n < 17 целых 2/6, т.е. n < 17 целых 1/3. Значит, n = 17.
Формула суммы n первых членов арифметической прогрессии:
Sn = (2а₁ + d(n - 1))/2 · n.
S₁₇ = (2 · 102 + 6 · 16)/2 · 17 = (204 + 96)/2 · 17 = 300/2 · 17 = 150 · 17 = 2550.
ответ: 2550.
1 печник может сложить всю печь за x часов, по 1/x части в час.
2 печник может сложить всю печь за y часов, по 1/y части в час.
Вместе они сделают печь за 12 часов, по 1/12 части в час.
1/x + 1/y = 1/12
Если 1 печник проработает 2 ч, а 2 - 3 часа, то они сделают 1/5 часть.
2/x + 3/y = 1/5
Делаем замену 1/x = a, 1/y = b
{ a + b = 1/12
{ 2a + 3b = 1/5
Умножаем 1 уравнение на 3, а 2 уравнение на -1
{ 3a + 3b = 3/12 = 1/4
{ -2a - 3b = -1/5
Складываем уравнения
3a - 2a = 1/4 - 1/5 = 5/20 - 4/20
a = 1/x = 1/20; x = 20
b = 1/y = 1/12 - a = 1/12 - 1/20 = 5/60 - 3/60 = 2/60 = 1/30; y = 30
ответ: 1 печник сложит печь за 20 часов, а 2 печник за 30 часов.