Объяснение:
1. Линейная функция задана формулой y=x+4
не выполняя построения, найдите:
1)принадлежность точек графику A(2;2) В(-1;3) С(10;-7)
2)координаты точек пересечения графика функции с осями координат
1)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
A(2;2)
y=x+4
2=2+4
2≠6, не принадлежит
В(-1;3)
3= -1+4
3=3, принадлежит
С(10;-7)
-7=10+4
-7≠14, не принадлежит.
2)График пересекает ось Оу при х=0:
х=0
у=0+4
Координаты точки пересечения графиком оси Оу (0; 4)
график пересекает ось Ох при у=0:
у=0
0=х+4
-х=4
х= -4
Координаты точки пересечения графиком оси Ох (-4; 0)
2. Постройте график функции y = 2x +3. Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 1; −1; 0;
2) значение аргумента, при котором значение функции равно 0; 5;
3) значения аргумента, при которых функция принимает отрицательные значения.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = 2x +3
Таблица:
х -1 0 1
у 1 3 5
1)Чтобы определить значение у, нужно известное значение х подставить в уравнение и вычислить у:
а)х=1
у=2*1+3=5 у=5 при х=1
б)х= -1
у=2*(-1)+3=1 у=1 при х= -1
в)х=0
у=2*0+3=3 у=3 при х=0
2)Чтобы определить значение х, нужно известное значение у подставить в уравнение и вычислить х:
а)у=0
0=2х+3
-2х=3
2х= -3
х= -1,5 при х= -1,5 у=0
б)у=5
5=2х+3
-2х=3-5
-2х= -2
х=1 при х=1 у=5
3)Согласно графика, у<0 при х∈(- ∞, -1,5)
Функция принимает отрицательные значения при х от -1,5 до минус бесконечности.
3. При каком значении k график функции y = kx − 15 проходит через точку C (−2; −3)?
Нужно подставить в уравнение известные значения х и у (координаты точки С) и вычислить k:
y = kx − 15 C (−2; −3)
-3=k*(-2)-15
-3= -2k-15
2k= -15+3
2k= -12
k= -6
4. При каком значении переменной x функции у= 2x − 6 и у = −0,4x + 6 принимают равные значения? Постройте на одной координатной плоскости графики функций .
Нужно приравнять правые части уравнений (левые по условию равны):
2x−6=−0,4x+6
2х+0,4х=6+6
2,4х=12
х=12/2,4=5 при х=5 (у равны 4)
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у= 2x − 6 у = −0,4x + 6
Таблицы:
х -1 0 1 х -5 0 5
у -8 -6 -4 у 8 6 4
Объяснение:
№ 3
b₁=64 b₂=32 q=b₂/b₁=32/64=1/2
n=6
S₆=b₁((qⁿ-1)/(q-1))
S₆=64·(((1/2)⁶-1)/(1/2-1))=64((1/64-1)/(-1/2))=64·((-63/64)/(-1/2))=64·(63/32)=
2·63=126 ( B)
№4
a₁=-10 a₅=-4 n=5
a₅=a₁+(n-1)d
-4=-10+(5-1)d
-4=-10+4d
4d=6
d=6/4=1.5
n=8
a₈=a₁+(n-1)d=-10+(8-1)·1.5=-10+7·1.5=-10+10.5=0.5
S₈=(a₁+a₈)n/2=(-10+0.5)8/2=-9.5·8/2=-38 (A)
№5
по теотеме Синусов a/Sina = b/Sin B
3/Sin 60° = x/Sin 45°
3/ (√3/2) = x/ (√2/2)
x=((√2/2)·3) / (√3/2)
x=(3√2/2)×(2/√3)=(3√2)/√3=(3√6)/3=√6 (B)
№6
a₁=6 a₂=2
d=2-6=-4
a₃=a₂+d=2-4=-2 (B)
№ 8
R=4√3 ( формула)
a=R√3 =4√3×√3=4×3=12 см ( А)
№10
АВС подобен А₁В₁С₁ , отсюда А₁В₁/АВ=В₁С₁/ВС=А₁С₁/АС
15/3=А₁В₁/4
А₁В₁=15×4/3=60/3=20 (В)