1.) Корнями уравнения (x+2)(x-6) =0
являются X1 = -2 и X2 = 6
2.) Рисуем числовую прямую:
(-2) 0 6
3.) Определяем знак на каждом из 3х промежудков (от минус бесконечности до -2, от -2 до 6 и от 6 до плюс бесконечности)
Для этого подставим например -4 в неравенство: (-4 +2)(-4 -6) = -2*(-10) - результат - положительный следовательно на промежудке (- бесконечность; -2) стоит "+".
Аналогично с 2мя другими промежудками:
(-2) 0 6
+-+__
4.) По условию уравнения "<", нам подходит только второй промежуток.
5.) ответ: X (принадлежит) (-2; -6)
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
(x+2)(x-6)<0
+ - +
-2 6
ответ: (-2;6)