Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
Анализируем отмеченные числа. Числа а и b отрицательные, т.е. a<0 и b<0. Причём a<b. Число с положительное, т.е. с>0.
1) a+b>0 - неверно Т.к. числа a и b отрицательные, то их сумма число тоже отрицательное.
2) 1/a>1/b - верно Если для модулей чисел справедливо неравенство |a| > |b|, то у их обратных чисел всё наоборот: 1/|a| < 1/|b|. Но т.к. числа отрицательные, то 1/a > 1/b
3) ac>0 - неверно Перемножаются числа с разными знаками, следовательно, результат отрицательный.
4) 1/b>1/c - неверно Слева число отрицательно, а справа - положительно.
F(x)=x^4/4
x^3=8 x=2
2-1=1
8*1=8
F(2)=16/4=4
F(1)=1/4
S=8-4+1/4=41/4 (четыре и 1/4)