Примем работу за 1. Пусть производительность первого экскаватора (объём выполненной работы за 1 час) равна х, а второго экскаватора - у. Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1: 48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75: 40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки): { 48(х+у)=1 { 40х+30у=0,75
{х+у=1/48 {40х+30у=0,75
{х=1/48-у {40х+30у=0,75
Подставим значение х во второе уравнение: 40(1/48-у)+30у=0,75 40/48-40у+30у=0,75 5/6-10у=0,75 -10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12 -10у=-1/12 10у=1/12 у=1/12÷10=1/120 - производительность второго экскаватора. Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов. ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение: х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80 1÷1/80=80 (часов)
1ч30мин=1.5чх-скорость автомобиляt-время в пути мотоциклиста до встречи с автомобилем (из а до с)t+1.5-время в пути автомобиля до встречи с мотоциклистом (из а до с) t=1.5x/(75-x)х*t= расстояние из с в в, которое проехал автомобиль375-75t=расстояние из с в в, которое не проехал мотоциклист375-75t=xtxt+75t=375t(x+75)=375x+75=375/tx+75=375: (1.5x/(75-x))х+75=375*((75-х)/1.5х)х+75=(28125-375х)/1.5х28125-375х=1.5х(х+75)28125-375х=1.5х^2+112.5х1.5х^2+487.5х-28125=0д=237656.25+168750=406406.25корень из д=637,5х1=(-487.5-637.5)/3=-375 не подходитх2=(-487.5+637.5)/3=50км/ч скорость автомобиля 50*1.5=75км проехал автомобиль за 1ч30мин75-50=25км/ч скорость сближения75: 25=через 3 часа мотоцикл догнал автомобиль в с3*75=50(3+1.5) 225=225км расстояние от а до с.