810. Чтобы привести дроби к общему знаменателю нужно и верхнуюю и нижнюю часть умножить на такое число, чтрбы нижняя часть двух дробей стала одинакова. а) 1/4 и 1/6. Произведение заменателей- 6*4=24. чтобы был знаменатель 24 нужно умножить верх и низ первой дроби на 6 (так как надо получить 24, а 4 надо умножить на 6, чтобы получить 24), а вторую- на 4. получаем: 6/24 и 4/24 Теперь к наимееьшему общему знаменателю. это такое число, которое сравняет знаменатели, но оно должно быть самое маленькое их возможных (то есть чтобы и 6 делилось на это число и 4, но оно должно быть самое первое из возможных), а это число 12. получаем: 2/12 и 3/12 по аналогии остальное: в)6*8=48 8/48 и 6/48 наименьший знаменатель- 24 4/24 и 3/24 д) 15*10=150 20/150 и 45/150 наименьший знаменатель- 30 4/30 и 9/30
811. а)наименьший знаменатель- 4. первую дробь оставляем, вторую умножаем на 2 5/4 и 6/4 б)наименьший знаменатель 30 5/30 и 9/30 ж) знаменатель- 30 15/30 и 4/30
Решение Половина пути для второго автомобиля 0,5. Пусть х км/ч – скорость первого автомобилиста, тогда (х + 54) км/ч - скорость второго автомобилиста Время второго автомобиля, за которое он весь путь 0,5 / 36 + 0,5/(x + 54) Время первого автомобиля равно времени второго автомобиля. 1/x = 0,5 / 36 + 0,5/(x + 54) 1/x - 0,5 / 36 - 0,5/(x + 54) = 0 36(x + 54) – 0,5x(x + 54) – 0,5*36x = 0 36x + 1944 – 0,5x² - 27x – 18x = 0 – 0,5x² - 9x + 1944 = 0 I : (-0.5) x² + 18x – 3888 = 0 D = 324 + 4*1*3888 = 15876 = 1262 X₁ = (- 18 – 126)/2 = - 72 не удовлетворяет условию задачи X₂ = (- 18 + 126)/2 = 54 54 км/ч - скорость первого автомобилиста ответ: 54 км/ч
x - 1 = (x - 1)²
x - 1 = x² - 2x + 1
- x² + x + 2x - 1 - 1 = 0
- x² + 3x - 2 = 0
x² - 3x + 2 =0
D = b² - 4ac = 9 - 4 × 2 = 1
x1 = ( 3 + 1) / 2 = 2
x2 = ( 3 - 1) / 2 = 1
ответ: x1 = 2, x2 = 1.