М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pixelbit
pixelbit
03.07.2021 04:27 •  Алгебра

Квадратный корень из 24-4 квадратных корней из 6+ квадратный корень из 54

👇
Ответ:
Shkodinka
Shkodinka
03.07.2021
√24 - 4√6 +√54= √4*6 - 4√6 + √9*6 = 2√6 - 4√6 + 3√6 =5√6 -4√6= √6
4,7(85 оценок)
Открыть все ответы
Ответ:
abekeev
abekeev
03.07.2021
Добрый день! Давайте решим задачу.

Чтобы получить число, которое делится на 18, нам необходимо вычеркнуть три цифры из числа 81457629 так, чтобы остаток от деления на 18 равнялся нулю.

Чтобы найти остаток от деления обычного числа на 18, мы должны просуммировать цифры этого числа и проверить, делится ли сумма на 18.

Давайте сложим все цифры числа 81457629: 8 + 1 + 4 + 5 + 7 + 6 + 2 + 9 = 42.

Мы получили сумму равную 42. Проверим, делится ли она на 18.

42 не делится на 18 без остатка, поэтому мы не можем вычеркнуть ни одну из цифр числа 81457629 и получить число, которое бы делилось на 18.

В этой задаче не существует решения, по которому вычеркивание трех цифр из числа 81457629 даст нам число, которое делится на 18.

Поэтому нам нет возможности указать какое-либо получившееся число.

Если у вас есть еще вопросы, пожалуйста, задавайте! Я готов помочь.
4,4(35 оценок)
Ответ:
danilcoptsov1
danilcoptsov1
03.07.2021
Давайте пошагово решим данное уравнение, чтобы получить ответ. У нас дано уравнение:
y−hh2+y2⋅(h+yh−2hh−y) при h=2 и y=2–√.

Шаг 1: Подставим значения h=2 и y=2–√ в уравнение:
2−2(2)^2+(2–√)^2⋅(2+(2–√)2⋅(2−(2–√))

Шаг 2: Решим выражения в скобках:
2−2(4)+(2–√)^2⋅(2+(2–√)2⋅(2−(2–√)))

Шаг 3: Возведение в квадрат:
2−8+(2–√)^2⋅(2+(2–√)2⋅(2−(2–√)))

Шаг 4: Вычисление квадрата:
2−8+(4–4√+√−4)⋅(2+(4–4√+√−4)2⋅(2−(2–√)))

Шаг 5: Упрощение:
2−8+(2–√)⋅(2+(4–4√+√−4)2⋅(2−(2–√)))

Шаг 6: Раскрытие скобок во втором слагаемом:
2−8+(2–√)⋅(2+(16–16√+4−8√+2√−4)⋅(2−(2–√)))

Шаг 7: Упрощение выражений:
2−8+(2–√)⋅(2+(16−12√+2√−4)⋅(2−(2–√)))

Шаг 8: Упрощение скобок во втором слагаемом:
2−8+(2–√)⋅(2+(12−10√)⋅(2−(2–√)))

Шаг 9: Упрощение выражений:
2−8+(2–√)⋅(2+(12−10√)⋅(2−2+√))

Шаг 10: Упрощение скобок в третьем слагаемом:
2−8+(2–√)⋅(2+(12−10√)⋅(√))

Шаг 11: Упрощение выражений:
2−8+(2–√)⋅(2√+(12−10√)⋅(√))

Шаг 12: Умножение внутри скобок:
2−8+(2–√)⋅(2√+12√−10√^2)

Шаг 13: Упрощение выражений:
2−8+(2–√)⋅(2√+12√−10√^2)

Шаг 14: Упрощение:
2−8+(2–√)⋅(14√−10√^2)

Шаг 15: Упрощение:
2−8+(2–√)⋅(14√−10√^2)

Шаг 16: Умножение внутри скобок:
2−8+(28√−20√^2)+(−28h+20h√−2h√−14h√^2+10h^2+2√^2+16√^3−4√^3+2)

Шаг 17: Упрощение:
2−8+(28√−20√^2)+(−28h+20h√−2h√−14h√^2+10h^2+2√^2+16√^3−4√^3+2)

Шаг 18: Упрощение:
2−8+(28√−20(2))+(−28(2)+20(2√)−2(2√)−14(2√^2)+10(2)^2+2(√^2)+16√^3−4√^3+2)

Шаг 19: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 20: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 21: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 22: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 23: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 24: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 25: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 26: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 27: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 28: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 29: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 30: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 31: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 32: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 33: Упрощение:
2−8+(28√−40)+(−56+40√−4√−28√^2+40+2√^2+16√^3−4√^3+2)

Шаг 34: Возьмем числа перед корнем и внесем суммы и разности под общий корень:
2−8+28√−40−56+40√−4√−28(√^2)+40+2(√^2)+16√^3−4√^3+2

Шаг 35: Упрощение:
2−8+28√−40−56+40√−4√−28(1)+40+2(1)+16√^3−4√^3+2

Шаг 36: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 37: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 38: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 39: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 40: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 41: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 42: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 43: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 44: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 45: Расчет выражений:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 46: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 47: Выполнение операций:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 48: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 49: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 50: Упрощение:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 51: Выполнение операций:
2−8+28√−40−56+40√−4√−28+40+2+16√^3−4√^3+2

Шаг 52: Округление до сотых:
-126.66
4,5(25 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ