Область допустимых значений: все значения, кроме 0 (деление на ноль)
Упрощаем:
у= (9х+х^3)/(3х) =3+(1/3)*x^2
Строим параболу с вершиной в (0;3), ветви вверх и проходят через точки (3;6) и (-3;6)
И теперь выкалываем (рисуем кружок) на месте вершины этой параболы в точке (0;3), т.к. при x=0 данная функция не определена.
На прилагаемом рисунке точка в вершине параболы не выколота, но это надо сделать.
1)sinxcosx+2sin^2 x=cos^2 x
sinxcosx+2sin^2 x-cos^2 x=0 |:cos^2 x; cos^2 x не равно 0
tgx+2tg^2 x-1=0
2tg^2 x+tgx-1=0
tgx=t
2t^2+t-1=0
D=1+8=9
t1=(-1+3)/4=1/2
t2=(-1-3)/4=-1
tgx=1/2
x=arctg1/2+pk; k принадлежит Z
или
tgx=-1
x=-p/4+pk; k принадлежит Z
2)3sin^2x-4sinxcosx+5cos^2x=2
3sin^2 x-4sinxcosx+5cos^2 x-2=0
3sin^2 x-4sinxcosx+5cos^2 x-2sin^2 x-2cos^2x=0 |:cos^2 x; cos^2 x не равно 0
3tg^2 x-4tgx+5-2tg^2 x-2=0
tg^2 x-4tgx+3=0
tgx=t
t^2-4t+3=0
D=16-12=4
t1=(4+2)/2=3
t2=(4-2)/2=1
tgx=3
x=arctg3+pk; k принадлежит Z
или
tgx=1
x=p/4+pk; k принадлежит Z
Пусть 1-й трактор вспашет поле за х дней. тогда второй - за х+5 дней. Тогда производительность тракторов 1-го(за один день впашет) 1/х , 2-го 1/(х+5).
Совместно за один день оба трактора вспашут 1/х+1/(х+5), что по условию равно 2/3:4= 1/6 часть поля. Имеем уравнение:
1/х+1/(х+5)=1/4; сводим к общему знаменателю левую часть уравнения.
(х+5+х))/х(х+5)=1/6 ; воспользуемся свойством прпорции, учитывая, что х(х+5)≠0, х≠0,х≠-5;
6(2х+5)=х(х+5);
12х+30=х²+5х;
х²+5х-12х-30=0;
х²-7х-30=0;
По т. Виета: х₁=-3- не удовлетворяет условию задачи, х₂=10.
1-й трактор вспашет поле за 10 дней, второй - за 10+5 = 15 дней.
см.рис
====================================
1/3(x^2+9)