Найдите корни уравнения, принадлежащие промежутку [-π; π). уравнение уже решено: как найти корни именно этого промежутка? cos(4x+π/4)=-корень из 2/2 4x+π/4=±(π-π/4)+2πn,n∈ℤ 4x=±3π/4-π/4+2πn,n∈ℤ x=±3π/16-π/16+πn2,n∈ℤ
если n=2, то x= 9п/8 (корень не подходит, потому что больше п), следовательно, все n, которые больше 2, не будут удовлетворять условию. Переходим на отрицательные.
если n=-1, то x= -3п/8 (корень подходит)
если n=-2, то x= -7п/8 (корень подходит)
если n=-3, то x= -11п/8 (корень не подходит, потому что меньше -п), следовательно, все n, которые меньше -3, не будут удовлетворять условию.
х = -п/4 + пn/2
Перебираем все целые числа n
если n=0, то x= -п/4 (корень подходит)
если n=1, то x= п/4 (корень подходит)
если n=2, то x= 3п/4 (корень подходит)
если n=3, то х= 5п/4 (корень не подходит, потому что больше п), следовательно, все n, которые больше 3, не будут удовлетворять условию. Переходим на отрицательные.
если n=-1, то x= -3п/4 (корень подходит)
если n=-2, то x= -5п/4 (корень не подходит, потому что меньше -п), следовательно, все n, которые меньше -2, не будут удовлетворять условию.
Решение 1) 16tg54*tg36 = 16tg(90° - 36°)*tg36 = = 16*ctg36°*tg36 = 16 2) Пусть х км\ч - скорость лодки в неподвижной воде (х+3) км/ч - скорость по течению реки (х-3) км/ч - скорость против течения реки время, затраченное на путь против течения: 91/(х-3) время, затраченное на путь по течению: 91/(х+3) По условию сказано, что на обратный путь было затрачено на 6 часов меньше. Составим и решим уравнение. 91/(х-3) = 91/(х+3) + 6 91(х+3) = 91(х-3) + 6(х+3)(х-3) 91х+273=91х-273+6х²-54 6х²-600=0 x²-100=0 x²=100 х=10, х=-10 -10 не удовлетворяет условию задачи условию задачи, значит скорость лодки в неподвижной воде 10 км\ч ответ: 10 км\ч 3)
x = п/8 + пn/2
Перебираем все целые числа n
если n=0, то x= п/8 (корень подходит)
если n=1, то x= 5п/8 (корень подходит)
если n=2, то x= 9п/8 (корень не подходит, потому что больше п), следовательно, все n, которые больше 2, не будут удовлетворять условию. Переходим на отрицательные.
если n=-1, то x= -3п/8 (корень подходит)
если n=-2, то x= -7п/8 (корень подходит)
если n=-3, то x= -11п/8 (корень не подходит, потому что меньше -п), следовательно, все n, которые меньше -3, не будут удовлетворять условию.
х = -п/4 + пn/2
Перебираем все целые числа n
если n=0, то x= -п/4 (корень подходит)
если n=1, то x= п/4 (корень подходит)
если n=2, то x= 3п/4 (корень подходит)
если n=3, то х= 5п/4 (корень не подходит, потому что больше п), следовательно, все n, которые больше 3, не будут удовлетворять условию. Переходим на отрицательные.
если n=-1, то x= -3п/4 (корень подходит)
если n=-2, то x= -5п/4 (корень не подходит, потому что меньше -п), следовательно, все n, которые меньше -2, не будут удовлетворять условию.