М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gorbunovayulia
gorbunovayulia
21.07.2021 09:49 •  Алгебра

Задана прогрессия bn: b1> 0; b1+b4=-49 и b2+b3=14. найти первый элемент b1 и знаменатель q прогрессии.

👇
Ответ:
Melika09
Melika09
21.07.2021
B1 + b1q^3 = -49
b1q + b1q^2 = 14 разделим первое уравнение на 2-е
(1 + q^3)/(q +q^2) = -7/2
(1+q)(1 -q +q^2)/q(1 +q) = -7/2
(1 -q +q^2) /q = -7/2
2(1 - q +q^2) = -7q
2 -2q +2q^2 +7q = 0
2q^2 +5q +2 = 0
D = b^2 -4ac = 25 -16 = 9
q1= -1/2,        a)  b1 + b1q^3 = -49                 б) q2 =-2          b1 + b1q^3 = -49
                           b1 +b1*(-1/8) = -49                                       b1 + b1*(-8) = -49
                           7/8 b1 = -49                                                  -7b1 = -49
                            b1 = -49: 7/8= -49*8/7= =56                          b1 = 7
4,8(84 оценок)
Открыть все ответы
Ответ:
Anonim2118
Anonim2118
21.07.2021

Ни четная ни нечетная(функция общего вида)

Объяснение:

1) Область определения - вся числовая прямая, это значит, что этот параметр не влияет на четность(функция может быть как четной, так и нечетной, так и общего вида)

2) Функция четна, если f(-x) = f(x), проверяем, f(-x) = 5 + 3x^3 и это не равно  f(x), значит функция не может быть четной

3) Функция нечетна, если f(-x) = -f(x), проверяем, f(-x) = 5 + 3x^3 и это не равно  -f(x), значит функция не может быть нечетной

4) Таким образом, эта функция ни четная ни нечетная, т.е. эта функция общего вида

4,4(30 оценок)
Ответ:
iyvvann
iyvvann
21.07.2021

1) для того чтобы функция была непрерывной, нужно чтобы пределы слева и справа в точках 0 и 1 были равны. Найдем их:

\lim_{x \to 0-0} \frac{1}{x}=-\infty \\ \lim_{x \to 0+0} x+1=1;\\

Так как 1≠-∞, то точка 0- это точка разрыва(второго рода).

Чтобы функция была неразрывной в точке 1, нужно чтобы предел от 3-ax^2 был равен 2, так как \lim_{x \to 1-0} x+1=2

При x=1 ⇒y=2.

Подставим координаты (1;2)  в формулу y=3-ax^2⇒2=3-а⇒а=1, то есть уравнение имеет вид y=3-x^2. Проверим это: \lim_{x \to 1-0} 3-x^2=2

Действительно 2=2, значит функция не будет являться непрерывной в точке 1.

ответ: х=0 - точка разрыва. функция непрерывна в точке х=1 при а=1

2)  Аналогично:

\lim_{x\to -1-0} 2-x=3

\lim_{x \to -1+0} \frac{1}{x}=-1

3≠-1, значит -1- это точка разрыва.

\lim_{x \to 1-0} \frac{1}{x} =1

В точке x=1 ⇒y=1. Подставим: 1=a*1⇒a=1.

Проверим: \lim_{x \to 1+0}x^2=1.

Так как точка  х=0 лежит в области определения функции y=\frac{1}{x}, а из ОДЗ следует что х≠0, то функция также будет прерываться в точке х=0

ответ: х=-1 - точка разрыва,  х=0- точка разрыва, функция будет непрерывна в точке х=1 при а=1


Исследовать функцию на непрерывность. найти, при каком значении параметра '' a '' функция будет непр
4,6(4 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ