Формула для нахождения корней квадратного уравнения
Выражение под знаком корня называется дискриминантом и обычно обозначается буквой D.
Формула для нахождения дискриминанта:
При решении возможны три случая: 1. Дискриминант положительный. Это значит, из него можно извлечь корень. Тогда у квадратного уравнения – два корня. Два различных решения.
2. Дискриминант равен нулю. Тогда получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых. Но, в упрощённом варианте, принято говорить об одном решении.
3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается (если это не высшая математика)
Пусть время, закоторое Миша решает 20 задач равноХчас, тогда в скорость его решения 20/Х (задач в час); По условию, заэто время ХчасКоля может решить в 2 разаменьше, т.е. 20:2=10 (задач) и, значит,скорость его решения: 10/Х (задач в час). Вместе в часони решат: (20/Х + 10/Х ) (задач в час). А по условию, вместе они решили 20 задачза2 часа,то есть, скорость их совместного решения: 20:2 = 10 (задач в час). Составим уравнение: 20/Х + 10/Х = 10; (20+10):Х =10; 30/Х=10; 30=10Х; Х=30:10; Х=3 (часа), (соответственно Коле потребуется в два раза большевремени, т.е. 6часов, а за эти 3часа он решит только 10 задач!) Проверка: 20:3 +10:3= 10; 30:3=10; 10=10
Пусть время, закоторое Миша решает 20 задач равноХчас, тогда в скорость его решения 20/Х (задач в час); По условию, заэто время ХчасКоля может решить в 2 разаменьше, т.е. 20:2=10 (задач) и, значит,скорость его решения: 10/Х (задач в час). Вместе в часони решат: (20/Х + 10/Х ) (задач в час). А по условию, вместе они решили 20 задачза2 часа,то есть, скорость их совместного решения: 20:2 = 10 (задач в час). Составим уравнение: 20/Х + 10/Х = 10; (20+10):Х =10; 30/Х=10; 30=10Х; Х=30:10; Х=3 (часа), (соответственно Коле потребуется в два раза большевремени, т.е. 6часов, а за эти 3часа он решит только 10 задач!) Проверка: 20:3 +10:3= 10; 30:3=10; 10=10
Формула для нахождения корней квадратного уравнения
Выражение под знаком корня называется дискриминантом и обычно обозначается буквой D.
Формула для нахождения дискриминанта:
При решении возможны три случая:
1. Дискриминант положительный. Это значит, из него можно извлечь корень. Тогда у квадратного уравнения – два корня. Два различных решения.
2. Дискриминант равен нулю. Тогда получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых. Но, в упрощённом варианте, принято говорить об одном решении.
3. Дискриминант отрицательный. Из отрицательного числа квадратный корень не извлекается (если это не высшая математика)