Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
Пусть скорость горной реки х Плот плывет по реке 21 км в течение 21:х часовТуристы на лодке все расстояние проплыли за такое же время: 54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х Составим и решим уравнение: 54:(12+х) +0,5 =21:х Умножим обе части на х(12+х), чтобы избавиться от дробей: 54х +0,5х(12+х) =21(12+х) 54х +6х +0,5х² =252+21х 0,5х²+39х -252=0 D=b²-4ac=39²-4·0.5·-252=2025 Так как дискриминант больше нуля, то уравнение имеет два корня Один отрицательный и не подходит ( -84)Второй = 6 Скорость течения горной реки 6 км/ч
Если я правильно понял, то пример выглядит именно так