1.
a)
x² + 4x + 10 ≥ 0
Рассмотрим функцию у = x² + 4x + 10.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 4x + 10 = 0
D = 16 - 40 = - 24 < 0
нулей нет, значит график не пересекает ось Ох.
Схематически график изображен на рис. 1.
у > 0 при x ∈ (- ∞; + ∞)
ответ: 2) Решением неравенства является вся числовая прямая.
b)
- x² + 10x - 25 > 0 | · (- 1)
x² - 10x + 25 < 0
Рассмотрим функцию у = x² - 10x + 25.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 10x + 25 = 0
(x - 5)² = 0
x = 5
Схематически график изображен на рис. 2.
у < 0 при x ∈ {∅}
ответ: 1) Неравенство не имеет решений.
c)
x² + 3x + 2 ≤ 0
Рассмотрим функцию у = x² + 3x + 2.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² + 3x + 2 = 0
D = 9 - 8 = 1
Схематически график изображен на рис. 3.
у ≤ 0 при x ∈ [- 2; - 1]
ответ: 4) Решением неравенства является закрытый промежуток.
d)
- x² + 4 < 0 | · (- 1)
x² - 4 > 0
Рассмотрим функцию у = x² - 4.
Функция квадратичная, график - парабола, ветви направлены вверх.
Нули функции:
x² - 4 = 0
x² = 4
x = ± 2
Схематически график изображен на рис. 4.
у > 0 при x ∈ (- ∞; - 2) ∪ (2; + ∞)
ответ: 6) Решением неравенства является объединение двух промежутков.
___________________________
2.
(x - a)(2x - 1)(x + b) > 0
x ∈(- 4; 1/2) ∪ (5; + ∞)
Решение неравенства показано на рис. 5.
Найдем нули функции у = (x - a)(2x - 1)(x + b).
(x - a)(2x - 1)(x + b) = 0
(x - a) = 0 или (2x - 1) = 0 или (x + b) = 0
x = a x = 1/2 x = - b
Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит
или
или
ответ: a = - 4, b = - 5 или a = 5, b = 4.
1.
√3 + tg15° = √3 + tg(45°-30°) = √3 + tg45° - tg30°/1 + tg45°×tg30° = √3 + 1 - √3/3 / 1 + 1×√3/3 = √3 + 1 - √3/3 / 1 + √3/3 = √3 + 3-√3/3 / 3+√3/3 = √3 + 3-√3/3+√3 = √3 + (3 - √3)×(3 - √3)/6 = √3 + (3 - √3)²/6 = √3 + 9 - 6√3 + 3/6 = √3 + 12-6√3/6 = √3 + 6(2-√3)/6 = √3+2-√3 = 2
ответ: d) 2
2.
8sin15° × cos15° + √3 × tg60° = 4sin30° + √3 × √3 = 4×1/2 + (√3)² = 2+3 = 5
ответ: c) 5
3.
а) tg225° + sin30° = tg(180°+45°) + 1/2 = tg45° + 1/2 = 1 + 1/2 = 3/2 = 1,5
б) √2 × cos315° = √2 × cos(360°-45°) = √2 × cos(-45°) = √2 × cos45° = √2 × √2/2 = (√2)²/2 = 2/2 = 1
ответ: а) 1,5 б) 1