Выполняю задание по Вашей
1.f(-3)=0 неверно, т.к. абсциссе х=-3 соответствует отрицательная ордината, а не нуль.
2. D=0, неверно. если бы дискриминант равнялся нулю, то парабола касалась бы оси ох в одной точке, а если она пересекает ось в двух точках, то дискриминант больше нуля, и абсциссы точек пересечения параболы с осью ох - нули функции, или корни уравнения f(х)=0 , видим два различных корня это х=-8, х=2.
3. f(х)≤0, это утверждение верно, т.к. при х ∈[-8;2] все значения у меньше или равны нулю. как указал выше, у равен нулю в концах отрезка х=-8 и х=2, а остальные значения у =f(х) меньше нуля, т.е. график находится ниже оси ох.
4. о дискриминанте говорили. нет. не верно, т.к. если бы дискриминант был меньше нуля, то с осью ох график бы не пересекался.
5. проведем мысленно прямую у=-5, с графиком она касается в одной точке, поэтому утверждение верно, корень уравнения х=-2
6. это не верно, т.к. парабола и прямая у=-3 пересекаются в двух точках, значит, уравнение имеет два решения.
7. дискриминант больше нуля, верно, что указывает на количество корней уравнения, их два различных корня, если D>0, а конкретнее, х=-8 и х=2.
Площадь окружности: S = \pi r2S=πr2
В трапецию можно вписать окружность в том случае, если суммы её противоположных сторон равны.
b+c = a+a, где b, c — основания трапеции, а — боковые стороны
Радиус вписанной в трапецию окружности равен половине высоты трапеции.
r = \frac{h}{2} = \frac{\sqrt{bc} }{2}r=
2
h
=
2
bc
,
где b, c — основания трапеции
r = \frac{\sqrt{2\cdot 18} }{2} = \frac{\sqrt{36} }{2}=\frac{6}{2}=3 \:\:(cm)r=
2
2⋅18
=
2
36
=
2
6
=3(cm)
Подставим значения в формулу площади окружности:
\begin{lgathered}S = \pi r2\\S = \pi \cdot 3^2 = 9\pi \: \approx \: 28.27 \:\:(cm^2)\end{lgathered}
S=πr2
S=π⋅3
2
=9π≈28.27(cm
2
)
ответ: Площадь окружности — 9\piπ см², что приблизительно равно 28,27 см².