Большое количество задач такого типа решаются при формулы Ньютона-Лейбница:

Поэтому, во-первых, нужно найти
и
- абсциссы точек пересечения графиков функций. Для этого нужно решить несложное уравнение:

А так как есть целых три точки пересечения, то придется считать два интеграла: первый - от
до
(как результат приравнивания функций:
), а второй - от
до
(здесь уже
):

Значит, площадь искомой фигуры (состоящей из нескольких других фигур) равна
или
(каких-то квадратных единиц измерения), если перевести в десятичную дробь.
Большое количество задач такого типа решаются при формулы Ньютона-Лейбница:

Поэтому, во-первых, нужно найти
и
- абсциссы точек пересечения графиков функций. Для этого нужно решить несложное уравнение:

А так как есть целых три точки пересечения, то придется считать два интеграла: первый - от
до
(как результат приравнивания функций:
), а второй - от
до
(здесь уже
):

Значит, площадь искомой фигуры (состоящей из нескольких других фигур) равна
или
(каких-то квадратных единиц измерения), если перевести в десятичную дробь.
ответ НЕТ, не могут.
Объяснение : поскольку сумма 1 и3 слагаемых x^2+5 всегда только положительна, то px должно быть точно отрицательным. Таким образом, если p больше 0, то х будет только меньше 0, а если p меньше 0, то корень х может быть только больше нуля. Т.е. в любом случае знаки х должны будут быть одинаковыми.