М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aldera1
aldera1
21.07.2021 10:41 •  Алгебра

1) lg(6*5^x-25*20^x)-lg(25)=x 2) lg(2^х+х+4) = х-хlg(5)

👇
Ответ:
YouTuber228
YouTuber228
21.07.2021
1) lg(6*5^x-25*20^x)-lg(25)=x
lg (\frac{6*5^x-25*20^x}{25}) =lg(10^x)
\frac{6*5^x-25*5^x*4^x}{25} =5^x*2^x
5^x*(6/25-2^{2x})=5^x*2^x
5^x\ \textgreater \ 0 при любом x, делим на него.
\frac{6}{25}-2^{2x}=2^x
Замена 2^x = y > 0 при любом x
y^2 + y - 6/25 = 0
25y^2 + 25y - 6 = 0
D = 25^2 + 4*25*6 = 1225 = 35^2
y1 = (25 - 35)/50 < 0
y2 = (25 + 35)/50 = 60/50 = 6/5
Обратная замена
2^x = 6/5
x=log_2( \frac{6}{5} )

2) lg(2^x+x+4)=x-x*lg(5)
lg(2^x+x+4)=x-lg(5^x)
lg(2^x+x+4)+lg(5^x)=x
lg[(2^x+x+4)*5^x]=lg(10^x)
(2^x+x+4)*5^x=10^x
10^x + 5^x*(x+4)=10^x
5^x*(x+4)=0
5^x > 0 при любом x, поэтому
x = -4
4,6(50 оценок)
Открыть все ответы
Ответ:
Opasnaya2001
Opasnaya2001
21.07.2021
И так для начало поясню. Это формулы сокращенного умножения. Их нужно выучить. И так: 
а) (2а+3)(2а-3)=
Это квадрат разности вот как он выглядит: (а+б)(а-б)=а^2-б^2
Cледовательно, нужно возвести 2а в квадрат и 3 возвести в квадрат, вот как это будет выглядеть:(2а+3)(2а-3)=4а^2-9
б) делается также возводишь y в квадрат и 5b тоже в квадрат
в)аналогично с а) и б)
г)Это квадрат суммы. выглядит так, (a+b)^2=(a^2+2ab+b^2) нужно возвести а в квадрат потом произведение а и б умножить на два и потом прибавить квадрат б. Как будет выглядеть:
(b+0,5)^2=(b^2+b+0,25)
д) Это наоборот квадрат разности,выглядит так, (a-b)^2=(a^2-2ab+b^2), следовательно,  (а-2х)^2= (a^2-4ax+4x^2)
е) Аналогично
4,4(67 оценок)
Ответ:
Nasti12
Nasti12
21.07.2021

Запишем матрицу в виде:

1 2 -2

-2 -1 1

1 -2 1

Главный определитель

∆=1*((-1)*1 - (-2)*1) - (-2)*(2*1 - (-2)*(-2)) + 1*(2*1 - (-1)*(-2)) = -3

Определитель отличен от нуля, следовательно, матрица является невырожденной и для нее можно найти обратную матрицу A-1.

Обратная матрица будет иметь следующий вид:

 

A11       A21     A31

A12    A22 A32

A13    A23 A33

где Aij - алгебраические дополнения.

Транспонированная матрица.

AT=  

1       -2       1

2      -1       -2

-2     1        1

Найдем алгебраические дополнения матрицы AT.

A1,1 = (-1)1+1  

-1       -2

1        1

∆1,1 = ((-1)*1 - 1*(-2)) = 1

A1,2 = (-1)1+2  

2       -2

-2       1

∆1,2 = -(2*1 - (-2)*(-2)) = 2

A1,3 = (-1)1+3  

2       -1

-2       1

∆1,3 = (2*1 - (-2)*(-1)) = 0

A2,1 = (-1)2+1  

-2      1

1        1

∆2,1 = -((-2)*1 - 1*1) = 3

A2,2 = (-1)2+2  

1       1

-2     1

∆2,2 = (1*1 - (-2)*1) = 3

A2,3 = (-1)2+3  

1      -2

-2      1

∆2,3 = -(1*1 - (-2)*(-2)) = 3

A3,1 = (-1)3+1  

-2       1

-1      -2

∆3,1 = ((-2)*(-2) - (-1)*1) = 5

A3,2 = (-1)3+2  

1        1

2      -2

∆3,2 = -(1*(-2) - 2*1) = 4

A3,3 = (-1)3+3  

1       -2

2      -1

∆3,3 = (1*(-1) - 2*(-2)) = 3

Обратная матрица:  

           1       2     0

=1/-3   3      3      3

          5      4      3

A-1=  

-1/3      -2/3      0

-1            -1       -1

-5/3     -4/3       -1.

Проверим правильность нахождения обратной матрицы путем умножения исходной матрицы на обратную. Должны получить единичную матрицу E.

E=A*A-1=  

1       2     -2

-2     -1      1

1      -2       1

 

          1       2      0

1/-3    3      3      3

         5      4      3

E=A*A-1=

1*1+2*3+(-2)*5 1*2+2*3+(-2)*4 1*0+2*3+(-2)*3

(-2)*1+(-1)*3+1*5 (-2)*2+(-1)*3+1*4 (-2)*0+(-1)*3+1*3

1*1+(-2)*3+1*5 1*2+(-2)*3+1*4 1*0+(-2)*3+1*3 =

 

                -3       0     0

 = 1/-3      0      -3        0

                0       0      -3

A*A-1=  

1        0      0

0       1       0

0       0       1.

Решение верно.


Найти обратную матрицу
4,4(14 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ