Пусть v - искомая скорость лодки, S - расстояние между пристанями. Тогда по течению лодка плыла со скоростью v+4 км/ч, и время в пути составило S/(v+4) часа. По условию, S/(v+4)=4,5=9/2 часа. Против течения лодка плыла со скоростью v-4 км/ч, и время в пути составило S/(v-4) часа. По условию, S/(v-4)=7. Получена система двух уравнений:
S/(v+4)=9/2 S/(v-4)=7
Из первого уравнения находим v+4=S/(9/2)=2*S/9 км/ч, из второго уравнения находим v-4=S/7 км/ч. Тогда (v+4)/(v-4)=2*S/9/(S/7)=14/9, откуда v+4=14*(v-4)/9, или v+4=14*v/9-56/9. Умножая обе части на 9, приходим к уравнению 9*v+36=14*v-56. перенося левую часть вправо, получаем уравнение 0=5*v-92, откуда 5*v=92 и v=92/5=18,4 км/ч. ответ: 92/5=18,4 км/ч.
Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
(х-2)²+24=(2+3х)²
х²-4х+4+24=4+12х+9х²
8х²+16х-24=0
х²+2х-3=0
По теореме Виета: х1=-3; х2=1
(х1+х2)*(-6)=(-3+1)*(-6)=12