Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
2) y=26 x-? 2x²-13x+26=26 2x²-13x=0 2x(x-6,5)=0 x=0 или х-6,5=0 х=6,5 Итак, у=26 при х=0 или при х=6,5
3) y`(x)=(2x²-13x+26)`=2*2x-13=4x-13 y`(x)=0 при 4x-13=0 4(x-3,25)=0 - + 3,25 min y(3,25)=2*(3,25)²-13*3,25+26=21,125-42,25+26=4,875 - наименьшее
***Примечание: Этот же пункт можно сделать проще, без применения производной. Графиком функции y=2x²-13x+26 является парабола, ветви которой направлены вверх, т.к. а=2 >0, поэтому наибольшего значения функции не существует, а наименьшее значение функция принимает в ординате своей вершины.
4) Находим точки пересечения функции с осью Ох: 2x²-13x+26=0 D=(-13)²-4*2*26=169-208=-39 <0 => точек пересечения с осью Ох не существует Находим точку пересечения с осью Оу: x=0 y(0)=2*0²-13*0+26=26 (0;26) - искомая точка