Скорость лодки в стоячей воде равна 35 км/ч.
Лодка, плывущая по течению, до места встречи пройдёт 46,8 км
Лодка, плывущая против течению, до места встречи пройдёт 37,2 км
Объяснение:
Пусть скорость лодок в стоячей воде х км/ч. Тогда скорость по течению (х+4) км/ч, а против течения (х-4) км/ч Т.к. лодки плыли 1,2 ч. То можно составить и решить уравнение
1,2 (х-4) +1,2 (х+4) = 84
1,2(х-4+х+4)= 84
1,2*2*х= 84
х= 84/2,4
х=35
Скорость лодки в стоячей воде равна 35 км/ч.
Лодка, плывущая по течению, до места встречи пройдёт
1,2 (35+4)= 46,8 км
Лодка, плывущая против течению, до места встречи пройдёт
1,2 (35-4)= 37,2 км
y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении