A =9x =4y +2 ; Число a должна иметь вид : a =36k +18 .
Т.к. число a трехзначное, то 100<36k+18 <1000 ⇔3 ≤ k ≤ 27. Количество таких чисел: n=27-(3-1) = 25 . a∈{ 126 ; 162 , 198 ; ...972} * * * Составляют арифметическую прогрессию * * * * ! 702 = 126 +(n-1)36⇒n=17 * * * 702 =36k+18 при k =19.
* * * P.S. * * * a = 9x = 4y +2 ; || 100 <9x <1000⇔12 <x ≤111 || y =(9x -2)/4 ; y = 2x + (x-2)/4 ; k= (x-2)/4⇒x=4k+2 . || y =2x+k =2(4k+2)+k =9k+4 || ⇒ { x =4k +2 . y =9k+4 . || 12 ≤ 4k+2 ≤ 111⇔2,5 ≤ k ≤27,25 ; 3 ≤ k ≤ 27 || a =9x =36k+18.
Отвечал уже. 1) Повторяется цифра 1. Это 4 варианта: 11ххх, 1х1хх, 1хх1х, 1ххх1. В каждом варианте вместо первой х можно поставить любую цифру из 9: 0, 2, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую их 8 оставшихся, вместо третьей х - любую из 7. Всего 4*9*8*7 = 2016 вариантов. 2) Повторяется цифра 0. Это 6 вариантов: 100хх, 10х0х, 10хх0, 1х00х, 1х0х0, 1хх00. В каждом варианте вместо первой х можно поставить любую из 8 цифр 2, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую из оставшихся 7 цифр. Всего 6*8*7 = 336 вариантов. 3) Повторяется цифра 2. Это 6 вариантов: 122хх, 12х2х, 12хх2, 1х22х, 1х2х2, 1хх22. В каждом варианте вместо первой х можно поставить любую из 8 цифр 0, 3, 4, 5, 6, 7, 8, 9. Вместо второй х - любую из оставшихся 7 цифр. Всего 6*8*7 = 336 вариантов. 4 - 10) Повторяются цифры 3 - 9. Это каждый раз по 336 вариантов. Всего получается 2016 + 9*336 = 2016 + 3024 = 5040 вариантов.