1) Находим точки пересечения функций у=4-х² и у=2-х
4-х²=2-х
х²-х-2=0
х₁*х₂=-2
х₁+х₂=1 => x₁=2; x₂=-1
2) Находим площадь фигуры, заключённой между графиками функций
у=4-х² и у=2-х
\begin{gathered} S=\int\limits^2_{-1} {(4-x^2-3+x)} \, dx =\int\limits^2_{-1} {(1-x^2+x)} \, dx=(x- \frac{x^3}{3}+ \frac{x^2}{2})|^2_{-1}==2-8/3+2-(-1+1/3+1/2)=4-8/3+1-1/3-1/2==5-1/2-3=2-1/2=1 \frac{1}{2} \end{gathered}S=−1∫2(4−x2−3+x)dx=−1∫2(1−x2+x)dx=(x−3x3+2x2)∣−12==2−8/3+2−(−1+1/3+1/2)=4−8/3+1−1/3−1/2==5−1/2−3=2−1/2=121
Итак, мы имеем четыре точки. они нам даны.
1) A(-5;0) Она лежит на окружности. Пользуемся следующим Запомни намертво - подставить x и y в уравнение. 25+0=25
2) B(4;-3) Тут пользуемся подстановкой. 16+9=25, следовательно эта точка может лежать на окружности.
3) решается аналогично, только числа наоборот - 9+16=25.
4) По логике уже неправильное. Но докажем это. Подставляем. 24^2 +1 - перебор, там уже за сотню уходит число. Значит, оно нам не подходит абсолютно.
ответ: 4
Задание решено (похоже на ГИА, если честно. Это ГИА? Если да - пиши в личку, если что непонятно будет.)
Формула суммы через первый и последний член суммы:
Подставим нашу сумму:
Мы знаем чему равен
Теперь решим как обычное уравнение:
Но наша задача узнать номер количества. А он не может быть отрицательным. Поэтому, подходит только n=10.