41-32х≥0;
9-3х≥0
5+х≥0
ОДЗ: х ∈[-5; 41/32]
Перепишем уравнение в виде
√(41-32x)=2√(5+x)+√(9-3x)
Возводим в квадрат.
41-32х=4(5+х)+4√(5+х)·√(9-3х)+9-3х
4√(5+х)·√(9-3х)=12-33х
Возводим в квадрат при условии 12-33х≥0 ⇒ х ≤12/33.
16(5+х)(9-3х)=144-792х+1089х²;
1137х²-696х-576=0
379х²-232х-192=0
D=(-232)²-4·379·(-192)=53 824+291 072=344 896
x=(232-√344896)/758≈-0,47 или х=(232+√344896)/758≈1,08 - не удовлетворяет условию х ≤12/33, поэтому не является корнем уравнения
Объяснение:
1.
a) ОДЗ: x²-9≠0 (x+3)(x-3)≠0 x₁≠-3 x₂≠3.
б)
x²-2x-15≠0 D=64 √D=8
x₁≠-3 x₂≠5.
x²+8x+15≠0 D=4 √D=2
x₃≠-5 x₄≠-3. ⇒
ОДЗ: x₁≠-5 x₂≠-3 x₃≠5.
2.
a) (x²+4)/(x-1)=5x/(x-1) ОДЗ: x-1≠0 x≠1
x²+4=5x
x²-5x+4=0 D=9 √D=3
x₁=1 ∉ОДЗ х₂=4
ответ: х=4.
б)
(x+3)/x=(2x+10)/(x-3) ОДЗ: x₁≠0 x-3≠0 x₂≠3.
(x+3)*(x-3)=x*(2x+10)
x²-9=2x²+10x
x²+10x+9=0 D=64 √D=8
ответ: x₁=-1 x₂=-9.
3.
Пусть скорость течения реки - х. ⇒
70/(10+х)=30/(10-х)
70*(10-x)=30*(10+x)
700-70x=300+30x
100x=400 |÷100
x=4.
ответ: скорость течения реки 4 км/ч.
б) х=7+2у
в) х=8-4у
г) х=1+3у
д) х=(8+2у)/4=2+0,5у
е) х=(6-4у)/2=3-2у
ж) х=(8+у)/3
з) х=(3+2у)/2=1,5+у