М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NovaHelper
NovaHelper
03.06.2022 12:17 •  Алгебра

сильно распишите полностью! умоляю вас , !

👇
Ответ:
ЗоНя3
ЗоНя3
03.06.2022

обяснение в фоткe

посмотрите там


сильно распишите полностью! умоляю вас , ! ​
4,8(6 оценок)
Ответ:
ледок
ледок
03.06.2022

1.400-m²=(20-m)(20+m)

2.4x²-25=(2x-5)(2x+5)

3.

2 \frac{7}{9} t {}^{2} - 1 = \\ \frac{25}{9} - 1 = \\ ( \frac{5}{3} - 1)( \frac{5}{3} + 1) \\

4.16a⁴-81=(4a²-9)(4a²+9)

5.(х+1)²-16=(х+1-4)(х-1-4)=(х-3)(х-5)

6.a²-12a+36=(a-6)²

7.16m²+24mn+9m²=25m²+24mn=m(25m+24n)

4,5(94 оценок)
Открыть все ответы
Ответ:
18alinochka150
18alinochka150
03.06.2022
Сначала приводим уравнение заданной прямой в нормальный вид, у переносим налево, остальное направо, сокращаем все, получается:
у=-1.5х+3.5

Затем составляем уравнение параллельной прямой. Если параллельна, то коэффициент перед х тот же, что и на заданной прямой, то есть -1.5. А свободный коэффициент, который должен быть на месте 3.5, неизвестен. Уравнение будет выглядеть так:
у=-1.5х+b
Для полного уравнения надо найти b. К счастью, мы знаем, что эта загадочная прямая проходит через точку А(5; 1). То есть когда у=1, то х=5. Это означает, что уравнение прямой будет иметь следующий вид:
1=-1.5*5+b - вот здесь находим b.
1=-7.5+b
b=8.5

То есть уравнение параллельной прямой будет таким:
у=-1.5х+8.5 или 3х+2у-17=0

Теперь перейдем к перпендикулярной прямой.
короче пусть другой ответит времени нет)
4,7(76 оценок)
Ответ:
BC122
BC122
03.06.2022
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
4,4(24 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ