X⁴-15x²-16=0 через замену у=х² получаем уравнение у²-15х - 64=0 находим d=b²-4ac=15²-4*1*(-16)=225+64=289 ⇒√d=17 находим у₁=(15-17): 2=-1 у₂=(15+17): 2= 16 вернёмся к замене х²= -1 уравнение решений не имеет х²=16 , следовательно х₁=4 и х₂= -4 2. рациональное уравнение : к общему знаменателю(3+х)(3-х) и найдём дополнительные множители к слагаемым. получаем уравнение (3х+1)(3-х)+х(3+х)=18 раскроим скобки 9х-3х²+3-х+3х+х²-18=0 -2х²+11х-15=0 домножим всё на (-1) 2х²-11х+15=0 найдём d=121-2*4*15=1 находим корни х₁=(11+1): 2=6 и х₂= (11-1): 2=5 оба корня знаменатель не обращают в 0 значит ответ 6 и 5
В1) F(x)=3x+x³/3+C Подставляем координаты точки М и находим С 6=3*1+1³/3+С ответ:
В2) F(x)=x³/3+3x²/2+C Поскольку F'(x)=х²+3х, то для нахождения точек экстремума приравняем ее 0 х²+3х=0 x(x+3)=0 Произведение равно 0, когда хотя бы один из множителей равен 0. Поэтому x₁=0 x₂+3=0 x₂=-3 Определяем знаки интервалов + - + ---------------₀---------------₀----------------> -3 0 В точке -3 производная меняет знак с плюса на минус, значит, это точка максимума В точке 0 производная пеняет знак с минуса на плюс, значит, это точка минимума На промежутке (-∞;-3] и [0;∞) функция возрастает На промежутке [-3;0] функция убывает
С1) Найдем производную F'(x)=(х⁵+3х²-cosх+17)'=5x⁴+sinx F'(x)=f(x) для всех х∈(-∞;+∞) Следовательно, F(x) есть первообразная для f(x). Что и требовалось доказать
0=6k+b
-4=0*k+b⇒b=-4
6k-4=0
6k=4
k=2/3
y=2/3*x-4