1.
(х-2)(х-3)(х-4)=(х-3)(х-4)(х-5)переносим в одну сторону
(х-2)(х-3)(х-4)-(х-3)(х-4)(х-5) =0выносим за скобки одинаковые множители
(х-3)(х-4)((х-2) - (х-5)) =0Чтобы получить произведение равное нулю, хотя бы один из множителей должен быть равен 0
получает три уравнения
(х-3) = 0 и (х-4) =0 и ((х-2) -(х-5)) = 0
х = 3 х= 4 х -2 -х+5 = 0
3 = 0 не имеет смысла
ответ х = 3, х=4
2.
переносим все влево от знака равно и меняем знак на противоположный у того, что переносим:
(х-2)(х-3)(х-4) - (х-3)(х-4)(х-5) = 0
2. Выносим за скобки общие множители:
(х-3)(х-4)((х-2)-(х-5))=0
3. раскрываем скобки, т.к. перед х-5 стоит знак минус, меняем занки на противоположные:
(х-3)(х-4)(х-2-х+5)=0
4, упростим выражение в скобке:
х-х-2+5=3
5. вернемся к уравнению
(х-3)(х-4)*3=0
оно равно нулю, когда одна из скобок равна нулю. Значит нужно решить два уравнения:
х-3=0 и х-4=0
х=3 и х=4
ответ. х=3; 4
Пусть х - скорость легкового автомобиля, тогда скорость грузового - (х-20). Врямя в пути определяется как отношение пройденного пути к скорости. Тогда Время в пути для легкового автомобиля - 30/х, для грузового - 30/(х-20). 15 минут=15/60 часа=1/4 часа. Составим уравнение
(30/х)+(1/4)=30/(х-20)
(30/х)-(30/(х-20))=-1/4
Приведем к общему знаменателю
(30(х-20)-30х)/(х(х-20))=-1/4
-600/(х^2-20x)=-1/4
х^2-20x=-600/(-1/4)
х^2-20x=2400
х^2-20x-2400=0
D=400+4*2400=10000
x1 =(20-100)/2=-40 - не удовлетворяет условию
х2=(20+100)/2=60 (км/ч) - скорость легкового автомобиля.
Тогда 60-20=40 (км/ч) - скорость грузового автомобиля