Используем геометрическое определение вероятности события A — "встреча с другом состоится".Если площадь S(X) фигуры X разделить на площадь S(A) фигуры A , которая целиком содержит фигуру X, то получится вероятность того, что точка, случайно выбранная из фигуры X, окажется в фигуре A. Обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 13.00 до 14.00 равно 60 мин. В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата OABC. Друзья встретятся, если между моментами их прихода пройдет не более 6 минут, то есть y-x<6 , y<x+6 (y>x) и x-y<6 , y>x-6 (y<x). Этим неравенствам удовлетворяют точки, лежащие в области Х. Для построения области Х надо построить прямые у=х+6 и у=х-6.Затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-6. Кроме этого точки должны находиться в квадрате ОАВС. Площадь области Х можно найти, вычтя из площади квадрата ОАВС площадь двух прямоугольных треугольников со сторонами (60-6)=54: S(X)=S(OABC)-2*S(Δ)=60²-2*1/2*54*54=3600-2916=684.
Два графика линейной функции имеют вид: у₁=к₁х₁+С₁ и у₂=к₂х₂+С₂
они будут пересекаться если не параллельны, а чтобы они не были параллельны К₁ не должен быть равен К₂, потому что если К₁=К₂ - графики параллельны (например у=5х+2 и у=5х-10 будут параллельны , так как к₁=к₂=5 ) чтобы найти точки пересечения графиков, надо привести их к виду у=кх+С, приравнять правые части и из полученного уравнения найти Х, потом Х подставить в любое из уравнений и найти У, точка с этими координатами (Х; У) - и есть точка пересечения найти точку пересечения графиков у=-3х+3 и у=2х+8 приравняем правые части -3х+3 = 2х+8 все с Х перенесем влево, все без икс - вправо -3х-2х=8-3 -5х=5 х=-1, подставим х=-1 в любое уравнение , например у=-3*(-1)+3 =6, у=6 х=-1, у=6 А(-1;6) точка пересечения