Сначала простая логика. Допустим, из первых пяти выстрелов Петя попал 2 раза подряд и получил ещё 3+3+1=7 патронов, далее, из этих 7-ми выстрелов он ещё раз попал 2 раза подряд и получил ещё 3+3+1=7 патронов и уже из этих семи (видимо, устав), сделал два попадания, но уже не подряд, заработав ещё 3+3=6 патронов и уложился в условия получения приза, израсходовав 5+7+7+6=25 патронов. Непротиворечащая первому варианту комбинаторика, мыслим от конечных цифр - всего 25 патронов использовал Петя, чтобы сделать 25 выстрелов и получить приз, значит 20 выстрелов он получил дополнительно (25-5=20). Эти дополнительные 20 патронов Петя мог получить, попав в мишень шесть раз по одному попаданию (3+3+3+3+3+3=18 патронов) и мининум два раза должен был попасть подряд, чтобы получить ещё 2 “патрона” (18+2=20). ответ: в двух несовпадающих подходах Петя попадал два раза подряд.
Дабы упростить задачу, сделаем так, чтобы график квадратичной функции касался прямой y = 3 в своей вершине. Вершина параболы y = x² - это точка O(0; 0). При параллельном переносе на 6 ед. влево и 3 ед. вверх вершиной параболы будет точка O1(6; 3). Чтобы из графика функции y = x² получить график функции y = (x - 6)² + 3, нужно y = x² перетащить на 6 ед. влево и на 3 ед. вверх, что мы и сделаем. В конечном итоге получим график квадратичной функции, которая касается в своей вершине прямой y = 3 в точке с абсциссой 6.
x₁ = 4; x₂ = 5.