М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aisha834
aisha834
18.03.2021 22:28 •  Алгебра

25x^2-10x+1≥0 pleas help me pleas help me pleas help me pleas help me pleas help me

👇
Ответ:
strunets1
strunets1
18.03.2021
Это неравенство с одной переменной во второй степени
приводим к нулям функции то есть приравниваем всё это выражение к нулю
получаем уравнение которое решается через дискриминант, и дискриминант равен 0, следовательно х=0,2
рисуем координатную прямую х
отмечаем точку 0,2 и закрашиваем так как знак не строгий
рисуем параболу ветвями вверх, так как коэффициент при х^2=25 и он больше нуля
далее отмечаем интервал и получаем промежуток
(-∞;0,2|^|0,2;+∞)
4,8(90 оценок)
Открыть все ответы
Ответ:
fire31
fire31
18.03.2021

172.

1) 5^(x+y)=125, (1)

3^((x-y)²-1)=1; (2)

5^(x+y)=5³, (1)

3^((x-y)²-1)=3^0; (2)

x+y=3, (1)

(x-y-1)(x-y+1)=0; (2)

y=3-x, (1)

(x-3+x-1)(x-3+x+1)=0; (2)

(2x-4)(2x-2)=0;

2x-4=0;

2x=4;

x1=2

или

2x-2=0;

2x=2;

x2=1.

y1=3-2=1;

y2=3-1=2.

ответ: (2;1), (1;2).

2) 3^x+3^y=12, (1)

6^(x+y)=216; (2)

6^(x+y)=6³;

x+y=3;

y=3-x;

3^x+3^(3-x)=12; (1)

3^(2x)-12*3^x+27=0;

3^x=t;

t²-12t+27=0;

D=144-108=36;

t1=(12-6)/2=3;

t2=(12+6)/2=9;

3^x=3;

x1=1;

3^x=9;

x2=2;

y1=3-1=2;

y2=3-2=1.

ответ: (1;2), (2;1).

3) 4^(x+y)=128, (1)

5^(3x-2y-3)=1; (2)

2^(2(x+y))=2^7, (1)

5^(3x-2y-3)=5^0; (2)

2x+2y=7, (1)

3x-2y-3=0; (2)

2y=7-2x, (1)

3x-7+2x-3=0; (2)

6x=10;

x=10/6=5/3;

y=(7-2x)/2=(7-10/3)/2=11/6.

ответ: (5/3;11/6).

4) 3^(2x-y)=1/81, (1)

3^(x-y+2)=27; (2)

3^(2x-y)=3^(-4), (1)

3^(x-y+2)=3³; (2)

2x-y=-3, (1)

x-y+2=3; (2)

x-y=1;

y=x-1;

2x-x+1=-3; (1)

x=-4;

y=-4-1=-5.

ответ: (-4;-5).

173.

1) 4^(x+y)=16, (1)

4^(x+2y-1)=1; (2)

4^(x+y)=4², (1)

4^(x+2y-1)=4^0; (2)

x+y=2, (1)

x+2y-1=0; (2)

y=2-x; (1)

x+2(2-x)-1=0; (2)

x+4-2x-1=0;

-x=-3;

x=3;

y=2-3=-1.

ответ: (3;-1).

2) 6^(2x-y)=√6, (1)

2^(y-2x)=1/√2; (2)

6^(2x-y)=6^(1/2); (1)

2^(y-2x)=2^(-1/2); (2)

2x-y=1/2, (1)

+

y-2x=-1/2; (2)

0=0

ответ: нет решений.

3) 5^(2x+y)=125, (1)

7^(3x-2y)=7; (2)

5^(2x+y)=5³, (1)

7^(3x-2y)=7^1; (2)

2x+y=3, (1)

3x-2y=1; (2)

y=3-2x; (1)

3x-2(3-2x)=1;

3x-6+4x=1;

7x=7;

x=1;

y=3-2*1=1.

ответ: (1;1).

4) 3^(4x-3y)=27√3, (1)

2^(4y+x)=1/(2√2); (2)

3^(4x-3y)=3^(7/2), (1)

2^(4y+x)= 2^(-3/2); (2)

4x-3y=7/2, (1)

4y+x=-3/2; (2)

x=-3/2-4y,

4(-3/2-4y)-3y=7/2; (1)

-6-16y-3y=7/2;

-19y=19/2;

y=-1/2;

x=-3/2-4(-1/2)=-3/2+2=1/2.

ответ: (1/2;-1/2).

4,8(91 оценок)
Ответ:
denisstar756
denisstar756
18.03.2021
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).

Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:

S = vt ;

Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:

\overline{r} = \overline{v}t ;

Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:

v = v_o + at , либо в векторном виде: \overline{v} = \overline{v_o} + \overline{a} t ;

Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:

S = v_o t + \frac{at^2}{2} либо в векторном виде: \overline{r} = \overline{v_o} t + \frac{ \overline{a} t^2}{2} ;

Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:

a = \frac{F_\Sigma}{m} либо в векторном виде: \overline{a} = \frac{ \overline{F}_\Sigma }{m} ;

Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:

\Delta \varphi = \omega t ;

Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:

\Delta x = A \cos{ ( \omega t + \varphi_o ) } ;

Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:

v = - A \omega \cos{ ( \omega t + \varphi_o ) } ;

Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:

a = - A \omega^2 \cos{ ( \omega t + \varphi_o ) } ;

Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:

Q^o = C \Delta t , где C = cm , либо в удельном виде: Q^o = c m \Delta t ;

Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:

Q^o = \lambda m ;

Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:

Q^o = L m ;

Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:

Q^o = q m ;

Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:

PV = \frac{m}{ \mu } RT ;

Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:

I = \frac{ \Delta q }{ \Delta t } ;

Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:

m F_\Phi z = I \Delta t , где F_\Phi = N_A e ;

Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:

I = \frac{U}{R} ;

Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:

Q^o = UQ = UI \Delta t = I^2 R \Delta t = \frac{ U^2 }{R} \Delta t ,

либо в мощностном виде: P = UI = I^2 R = \frac{ U^2 }{R} ;

Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:

F_A = B I \Delta L \sin{ \varphi } ;

Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:

F_\Lambda = B v q \sin{ \varphi } ;

Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:

U_{ind} = -\Phi'_t .
4,8(18 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ