Чтобы найти максимум функции, сначала найдём производную и приравняем её к нулю (критические точки), затем определит знаки производной. 1) Производная у = 2(х - 7)(х + 8) + (х - 7)^2 = (x - 7)(2x + 16 + x - 7) = (x - 7)(3x + 9)= 3(x - 7)(x + 3) 2) Найдём критические точки 3(х - 7)(х + 3)= 0 (распадающееся уравнение) х - 7 = 0 х + 3 = 0 х = 7 х = - 3 3) Нарисуйте числовую прямую и отметьте критические точки - 3 и 7. Они разбиваю прямую на три промежутка. Так как перед переменными стоят положительные знаки, то используя метод интервалов с правого интервала идёт чередование знаков "+ " "-" "+" 4) В точке х = - 3 знаки производной меняются с "+" на "-", а это признак точки максимум ответ: х = - 3
попробую росписать, как найти точки пересечения графика с осями. Расмотрим ось икс: если график фуекции пересекает икс, значит икс будет равно некоторому значению, а игрек равно нолю. Теперь подставим в наш график 0=4х-4 или 4х-4=0 4х=0+4 4х=4 х=4:4 х=1 Получается точка с координатами (1; 0)
Рассмотрим ось игрек: если график функции пересекает игрек, значит будет теперь наоборот, игрек будет равно некоторому значению, а икс равно нолю. Подставляем: у=4*0-4 у=0-4 у=-4 Иммем еще одну точку (0; -4) Нарисуй этот график на онлайне и ты увидишь что график функции пересекает именно в этих точках оси координат.
1) Производная у = 2(х - 7)(х + 8) + (х - 7)^2 = (x - 7)(2x + 16 + x - 7) = (x - 7)(3x + 9)= 3(x - 7)(x + 3)
2) Найдём критические точки 3(х - 7)(х + 3)= 0 (распадающееся уравнение)
х - 7 = 0 х + 3 = 0
х = 7 х = - 3
3) Нарисуйте числовую прямую и отметьте критические точки - 3 и 7. Они разбиваю прямую на три промежутка. Так как перед переменными стоят положительные знаки, то используя метод интервалов с правого интервала идёт чередование знаков "+ " "-" "+"
4) В точке х = - 3 знаки производной меняются с "+" на "-", а это признак точки максимум
ответ: х = - 3