М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
viktoria123987650
viktoria123987650
27.03.2021 23:52 •  Алгебра

16 в степени 2,3 делить на 4 в степени 2,6

👇
Ответ:
stasikpavel
stasikpavel
27.03.2021
Для начала вспомним свойство степени:
a^m/a^n=a^(m-n)
16 это 4 в квадрате
приводим числитель так,чтобы основание было = 4, т.е. 4 ^(2*2,3) 
По свойство степени 4^(2*2,3- 2,6) = 4^2 = 16,
Если есть вопросы-пиши :)
4,6(82 оценок)
Ответ:
Добрый день! Конечно, я готов выступить в роли вашего школьного учителя и помочь вам разобраться с этим вопросом.

Для начала, давайте разберемся с тем, что означает запись 16 в степени 2,3. Используя понятие степени, мы можем переписать это в виде: 16^2,3.

Степень означает, что мы должны возвести число 16 в степень 2,3. В данном случае степень не является целым числом, поэтому нам понадобится немного алгебры.

Вспомним, что a в степени b равно произведению a на себя b раз: a^b = a * a * ... * a (b раз, если b целое).

Однако, когда b не является целым числом, нам нужно применить несколько другой подход. Для вычисления числа в такой степени мы можем использовать свойство экспоненты, которое гласит, что a^b = exp(b * ln(a)), где exp обозначает экспоненту, равную примерно 2.71828, а ln — натуральный логарифм.

Теперь мы можем использовать это свойство для решения задачи. Давайте посчитаем значение 16 в степени 2,3:

16^2,3 = exp(2,3 * ln(16))

Далее нам нужно вычислить натуральный логарифм от числа 16. Для этого мы можем использовать калькулятор или таблицы значений. В результате получаем, что ln(16) примерно равен 2,775.

Теперь подставим это значение обратно в формулу:

16^2,3 = exp(2,3 * 2,775)

Далее, умножим 2,3 на 2,775:

2,3 * 2,775 = 6,40875

Используя калькулятор или таблицы значений, найдем exp(6,40875), что примерно равно 612.479.

Таким образом, 16 в степени 2,3 равно примерно 612.479.

Теперь перейдем ко второй части вопроса - делению 16 в степени 2,3 на 4 в степени 2,6. Опять же, используя те же свойства алгебры и экспоненты, мы можем запсиать это как:

(16^2,3) / (4^2,6)

Мы уже вычислили значение 16 в степени 2,3, поэтому остается только посчитать 4 в степени 2,6.

Аналогично предыдущему шагу, мы можем применить свойство экспоненты:

4^2,6 = exp(2,6 * ln(4))

Снова находим натуральный логарифм от числа 4, получая ln(4) примерно равным 1,386.

Теперь подставим это значение в формулу:

4^2,6 = exp(2,6 * 1,386)

Умножим 2,6 на 1,386:

2,6 * 1,386 = 3,6056

Используя калькулятор или таблицы значений, найдем exp(3,6056), что примерно равно 36,884.

Таким образом, 4 в степени 2,6 равно примерно 36,884.

Теперь, чтобы найти ответ на исходный вопрос, мы должны разделить 16 в степени 2,3 на 4 в степени 2,6:

(16^2,3) / (4^2,6) = 612.479 / 36.884

Используя калькулятор, мы можем найти результат:

612.479 / 36.884 ≈ 16.598

Таким образом, 16 в степени 2,3, деленное на 4 в степени 2,6, примерно равно 16.598.
4,7(48 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ