1)а_n=3n-15
2)a_n+1=a_n+n+1
3)a_n=200n-185
Объяснение:
1.
Последовательность являет
ся арифметической прогрес
сией:
а_n=а_1+d(n-1)
По условию а_1=-12
d=a_2-a_1=(-9)-(-12)=
=-9+12=3
Подставляем а_1 и d
вформулу для а_n :
a_n=-12+3(n-1)=
=-12+3n-3=
=3n-15
Рекурентная формула
a_n=-13+3n-3
2.
Закономерность:
Каждый член последователь
ности получен прибавлением
к предыдущему номера после
дующего члена:
a_n+1=a_n+(n+1)=a_n+n+1
3.
Последовательность являет
ся арифметической прогрес
сией:
а_1=15
d=a_2-a_1=215-15=200
a_n=a_1+d(n-1)
a_n=15+200(n-1)=
=15+200n-200=200n-185
Рекурентная формула
a_n=200n-185.
В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про бросание игральных костей и задачи о подбрасывании монет.
Перейдем еще к одному типу задач: про стрелков, которые делают выстрелы по целям (или мишеням), причем вероятности попаданий для каждого стрелка обычно заданы, а нужно найти вероятность ровно одного попадания, или не более двух попаданий, или всех трех и так далее, в зависимости от конкретной задачи.
Основной метод решения подобных задач - использование теорем о сложении и умножении вероятностей, который мы и разберем на примерах ниже. А перед примерами вы найдете онлайн калькулятор, который решить подобные задачи буквально в один клик! Удобно решать самому? Посмотрите видеоурок и скачайте бесплатный шаблон Excel для решения задач о выстрелах
Объяснение:
1) y= V(2+x-x^2)
ОДЗ:
2+x-x^2>=0
x^2-x-2<=0
x^2-x-2=0
D=(-1)^2-4*1*(-2)=9
x1=(1-3)/2=-1
x2=(1+3)/2=2
+[-1]-[2]+
D(y)= [-1; 2]
2) y=log(1-2cosx)
ОДЗ:
1-2cosx>0
-2cosx>-1
2cosx<1
cosx <1/2
x e ( П/3+2Пn; 5П/3+2Пn) n E Z