М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sashabayanov
sashabayanov
25.12.2021 09:48 •  Алгебра

Возникла проблема с симметричными системами уравнений для трех неизвестных. замены есть (какие выполняются), но не пойму как дальше после замены. заранее

👇
Ответ:
likery
likery
25.12.2021

1)   x+y=1-z

   x^2+y^2=(1-z^2)=(1-z)*(1+z)

   x^3+y^3= (1-z^3)=(1-z)*( 1+z+z^2)  

Положим что  x≠-y , тогда возможно поделить  второе уравнение на первое.

Делим второе уравнение на  первое:

(x^2+y^2)/(x+y)= 1+z

cкладываем с:

(x^2+y^2)/(x+y)  +x+y=(1-z)+(1+z)=2

(2x^2+2y^2+2xy)/(x+y)=2

x^2+xy+y^2=x+y

xy= (x+y) -(x^2+y^2)=(1-z)-(1-z^2)= z^2-z

x^3+y^3=(x+y)*(x^2-xy+y^2)=(1-z)*(1-z^2 -(z^2-z) )=(1-z)*(1+z-2z^2)=

=(1-z)*(1+z+z^2)

(1-z)*(1+z-2z^2 -1-z-z^2)=0

(1-z)*(-3z^2)=0

либо z=1 ; либо  z=0

Если z=1,  то  x+y=0 ,что  противоречит предположению, значит z=0.

x+y=1  (x^2+2xy+y^2=1)

x^2+y^2=1

2xy=0

либо  x=0 , либо  y=0.

Таким  образом имеем решения:

(0;1;0) ;(1;0;0)    ( в скобках  (x;y;z) )

Либо, если  x=-y  → z=1 ,но  тогда  x^2+y^2=2x^2=0  →x=y=0 (0;0;1)

Таким образом решения- это все комбинации  единички и двух нулей:

ответ:  (0;0;1) ; (0;1;0) ; (1;0;0)

2) Похожий  принцип решения:

x+y=7/2 -z

1/x +1/y=7/2 -1/z=(x+y)/(xy)

xy=1/z

(7/2 -z)/(1/z) =7/2-1/z

(7/2-z)*z -7/2+1/z=0

тк  z≠0

(7-2z)*z^2 -7z +2=0

7z^2-2z^3 -7z+2=0

7z*(z-1) -2*(z^3-1)=0

7z*(z-1)  -2*(z-1)*(z^2+z+1)=0

(z-1)* (7z -2z^2-2z-2)=0

 z1=1

-2z^2+5z-2=0

2z^2-5z+2=0

D=25 -16=9=3^2

z=(5+-3)/4

z2=2 ; z3=1/2

1)   z1=1

    x+y=5/2  

    xy=1

Cистема теоремы Виета  имеет  два симметричных решения,что можно найти подбором:

x1=2;  y2=1/2

x2=1/2; y2=2

2)  z2=2

 Из  симметрии задачи относительно x,y,z ,тк решений аналогично так же 2 симметричных имеем:

x3=1 ;y3=1/2

x4=1/2 ;y3=1

3)  z3=1/2

 x5=1 ; y5=2

 x6=2 ; y6=1

ответ:  все перестановки  чисел  (1;1/2;2)

4,4(85 оценок)
Открыть все ответы
Ответ:
Сашаawalon
Сашаawalon
25.12.2021

Вообще, исходя из определений, критическая точка для функции одного переменного - это точка, в которой производная функции равна 0.

Далее, для пункта 1 нам нужно, чтобы исходная функция убывала на (-∞;+∞), для этого производная должна быть неположительной на этом же интервале и в одной точке должна быть равной нулю.

y'=3(a+1)x^2+12x+2(a+1)

График производной - парабола (за исключением одного случая), причем её направление зависит от выражения с параметром. Нам нужно, чтобы парабола в одной точке касалась оси ОХ, а вся остальная парабола находилась ниже оси ОХ. То есть, её ветви должны быть направлены вниз.

Но для начала рассмотрим тот случай, когда a=-1 и это не парабола.

y'=12x. Видно, что исходная функция будет и возрастать, и убывать, так что a=-1 не подходит нам.

Вернемся к параболе. Направление ветвей вниз - ограничение 3(a+1)

Условие, когда один корень -  D=0 в уравнении y'=0

3(a+1)x^2+12x+2(a+1)=0; D_1=6^2-3(a+1)*2(a+1)=0;\\ 36-6(a+1)^2=0; 6-(a+1)^2=0; (a+1)^2=6; a+1=+-\sqrt{6}

Тогда имеем два значения a: a_1=\sqrt{6}-1; a_2=-\sqrt{6}-1

Учитывая ограничение a<-1 (корень из 6 больше 2), берем только a2.

Теперь к пункту 2, когда критических точек нет. На самом деле, всю работу мы почти сделали. Ещё раз выпишем производную

y'=3(a+1)x^2+12x+2(a+1)

Теперь нам надо, чтобы даже касаний оси ОХ этой параболой не было.  Тогда получается необходимость отсутствия корней уравнения y'=0. Этот случай при D<0 (корней нет, а сама парабола находится ниже оси ОХ, главное будет потом учесть ограничение на направление ветвей вниз - a<-1)

Чтобы решить это неравенство, нужно исследовать D как функцию, найти её нули и методом интервалов решить неравенство. Но нули её мы как раз нашли. Это a_1=\sqrt{6}-1; a_2=-\sqrt{6}-1

D_1=6(6-(a+1)^2)

Методом интервалов получим левый крайний и правый крайний промежуток a∈(-oo;-\sqrt{6}-1)(\sqrt{6}-1;+oo)

Но теперь надо учесть ограничение a<-1. Тогда правый промежуток нам не подойдет.

a∈(-oo;-\sqrt{6}-1)

Как-то так. Если в задаче необходимо объединить решения пункта 1 и пункта 2, то ответ будет выглядеть так: a∈(-oo;-\sqrt{6}-1]

4,4(26 оценок)
Ответ:
egulaim
egulaim
25.12.2021

Приведем очень простой пример, показывающий, как вычисляются дисперсия и стандартное отклонение. Допустим, что вам представилась возможность сыграть в следующую игру. Сначала вы инвестируете 100 уел. ед. Затем подбрасываете две монеты. Если выпадет “орел” — прибавляете к первоначальной сумме 20%, если “решка” — отнимаете 10%. Очевидно, существует четыре вероятных результата: “орел” + “орел”: +40%;

“орел” + “решка”: +10%;

“решка” + “орел”: +10%;

“решка” + “решка”: -20%.

Составим таблицу распределения частот:

X

+40

+10

-20

wt.

1

1

1

4

2

4

Относительная частота равна 1 к 4 (или 0,25), что вы получите 40%, равна 2 к 4 (или 0,5), что вы получите 10%, и 1 к 4 (или 0,25), что вы потеряете 20%. Ожидаемая доходность игры, следовательно, представляет собой средневзвешенную значений фактической доходности

Объяснение:

4,8(29 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ