Заметим, что для двух неравных натуральных чисел n < m наибольший общий делитель не превышает [m/2], где квадратные скобки означают округление вниз до ближайщего целого. Тогда среди всех чисел, меньших 100, наибольшие общие делители могут принимать значения от 1 до 49 — всего 49 вариантов. Так как синих чисел как раз 49, то каждое число от 1 до 49 написано по разу.
Простые числа 41, 43 и 47 должны быть написаны синим. Существует только один получить такие числа: надо написать рядом красные 41 и 82, 43 и 86, 47 и 94. Поскольку все остальные числа взаимно просты с 41, 43 и 47, то радом с красными 41, 43 и 47 будут написаны по синей единице, и синих единиц будет не меньше двух.
Для удобства обозначим скорость автобуса х, а скорость экспресса у. Автобус до места встречи двигался 6+24=30 мин. = 1/2 часа Экспресс до места встречи двигался 24 мин. = 6/15 часа - по условию. Оба они проехали одинаковое расстояние, поэтому можно записать 1) (1/2)*х=(6/15)*у Далее запишем формулу при уменьшении скорости автобуса в 2 раза. За 6 мин. = 1/10 часа автобус проедет (х/2)*(1/10) = х/20 км За время t до встречи с экспрессом автобус проедет (x/2)*t=xt/2 км Экспресс за время t проедет yt км, можно записать: 2) (x/20)+(xt/2)=yt Из этой формулы выразим t: (x+10xt)/20=yt x+10xt=20yt x=20yt-10xt x=t(20y-10x) 3) t=x/(20y-10x) Теперь из формулы 1) выразим х: x=12y/15 и подставим в формулу 3) часа или 4 минуты
ответ: если бы скорость автобуса уменьшилась вдвое экспресс догнал бы его через 4 минуты.
D=(-1)^2-4*1*(-6)=1+24=25
x1=(5-(-1))/2=6/2=3
x2=(-5-(-1))/2=-4/2=-2 а) 1. По теореме Виета
х1+х2 = 1
х1 * х2 = -6
Значит
х1 = - 2
х2 = 3