Объяснение:
признак делимости на три:
если сумма цифр числа делится на 3, то и все число делится на 3)
4+a+5+b+7 = 16+(a+b)
a+b ≠ {0; 1; 3; 4; 6; 7; 9; 10; 12; 13; 15; 16; 18}
a+b может быть = {2; 5; 8; 11; 14; 17}
a и b - это цифры, сумма не может быть больше, чем 9+9...
1. Найдите двенадцатый член и сумму первых двенадцати членов арифметической прогрессии (an), если a1 = 3, a2 = 7.
2. Найдите седьмой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = − и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии 27, −9, 3, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 6,4, если a1 = 3,6 и d = 0,4.
5. Какие два числа надо вставить между числами 2 и −54, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 2x − 1, x + 3 и x + 15 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 7, которые больше 100 и меньше 200.
Вариант 2
1. Найдите восьмой член и сумму первых восьми членов арифметической прогрессии (an), если a1= 1, a2 = 4.
2. Найдите четвёртый член и сумму первых пяти членов геометрической прогрессии (bn), если b1 = и q = 3.
3. Найдите сумму бесконечной геометрической прогрессии −64, 32, −16, ... .
4. Найдите номер члена арифметической прогрессии (an), равного 3,6, если a1 = 2,4 и d = 0,2.
5. Какие два числа надо вставить между числами 8 и −64, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений 3x − 2, x + 2 и x + 8 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 5, которые больше 150 и меньше 250.
Вариант 3
1. Найдите десятый член и сумму первых десяти членов арифметической прогрессии (an), если a1 = 2, a2 = 6.
2. Найдите третий член и сумму первых четырёх членов геометрической прогрессии (bn), если b1 = − и q = 5.
3. Найдите сумму бесконечной геометрической прогрессии −4, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 4,9, если a1 = 1,4 и d = 0,5.
5. Какие два числа надо вставить между числами 4 и −108, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 3, x + 4 и 2x − 40 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 9, которые больше 120 и меньше 210.
Вариант 4
1. Найдите седьмой член и сумму первых семи членов арифметической прогрессии (an), если a1 = 5, a2 = 11.
2. Найдите шестой член и сумму первых шести членов геометрической прогрессии (bn), если b1 = и q = 2.
3. Найдите сумму бесконечной геометрической прогрессии −6, 1, − , ... .
4. Найдите номер члена арифметической прогрессии (an), равного 8,9, если a1 = 4,1 и d = 0,6.
5. Какие два числа надо вставить между числами 3 и −192, чтобы они вместе с данными числами образовали геометрическую прогрессию?
6. При каком значении x значения выражений x − 7, x + 5 и 3x + 1 будут последовательными членами геометрической прогрессии? Найдите члены этой прогрессии.
7. Найдите сумму всех натуральных чисел, кратных 11, которые больше 100 и меньше 180.
Объяснение:
Кестеде органикалық заттар мен олардың маңыздылығын көрсететін ақпарат берілген. Кестені қажетті ақпаратпен толықтыр.Кестеде органикалық заттар мен олардың маңыздылығын көрсететін ақпарат берілген. Кестені қажетті ақпаратпен толықтыр.Кестеде органикалық заттар мен олардың маңыздылығын көрсететін ақпарат берілген. Кестені қажетті ақпаратпен толықтыр.Кестеде органикалық заттар мен олардың маңыздылығын көрсететін ақпарат берілген. Кестені қажетті ақпаратпен толықтыр.Кестеде органикалық заттар мен олардың маңыздылығын көрсететін ақпарат берілген. Кестені қажетті ақпаратпен толықтыр.Кестеде органикалық заттар мен олардың маңыздылығын көрсететін ақпарат берілген. Кестені қажетті ақпаратпен толықтыр.
0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18.
Объяснение:
Число делится на 3, если сумма его цифр кратна трём.
4 + a + 5 + b + 7 = 16+(а+b)
Ближайшее к 16 число, кратное трём, это число 18. Эту сумму получим в том случае, когда а+b = 2;
Следующее такое число равно 21, эту сумму получим в том случае, когда а+b = 5.
Следующее такое число равно 24, эту сумму получим в том случае, когда а+b = 8.
Следующее такое число равно 27, эту сумму получим в том случае, когда а+b = 11.
Следующее такое число равно 30, эту сумму получим в том случае, когда а+b = 14.
Следующее такое число равно 33, эту сумму получим в том случае, когда а+b = 17.
Следующее такое число равно 36, эту сумму получим в том случае, когда а+b = 20, но такого быть не может. Сумма двух цифр не может быть больше 18.
Итак, а+b может принимать следующие значения:
2, 5, 8, 11, 14, 17.
В вопросе задания речь о тех значениях, которых сумма принимать не может, тогда запишем оставшиеся варианты в промежутке от нуля и до восемнадцати:
0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18.