Объяснение:
Обозначим искомые числа через х и у.
В условии задачи сказано, что среднее арифметическое двух этих чисел равно 20, а их среднее геометрическое составляет 12, следовательно, можем записать следующее соотношение:
х + у = 40;
х * у = 144.
Решаем полученную систему уравнений.
Подставляя во второе уравнение значение у = 40 - х из первого уравнения, получаем:
х * (40 - х) = 144;
40х - х^2 = 144;
х^2 - 40x + 144 = 0;
x = 20 ± √(400 - 144) = 20 ± √256 = 20 ± 16;
х1 = 20 + 16 = 36;
х2 = 20 - 16 = 4.
Находим у:
у1 = 40 - х1 = 40 - 36 = 4;
у2 = 40 - х2 = 40 - 4 = 36.
ответ: искомые числа 4 и 36.
Решаем в м и сек.
10 мин. = 600 сек. Вверх по реке - это против течения.
Скорость первого катера против течения:
9 - 1 = 8 м/с, а второго 7- 1 = 6 м/с.
Пусть весь путь равен S, тогда S/6 - S/8 = 600
4S/24 - 3S/24 = 600;
S/24 = 600;
S = 600 · 24 = 14400 метров
Вниз по течению скорость первого катера:
9 + 1 = 10 м/с.
Он проплыл 14400 метров за 14400/10 = 1440 сек
Скорость второго по течению 7 + 1 = 8 м/с.
Он проплыл 14400м за 14400/8 = 1800 сек
1800 - 1440 = 360 сек = 360/60 = 6 минут
ответ: на 6 минут
___ Вроде бы так, если не ошибаюсь.